blob: 31d1f0fddead00ae808326336b175d226a46afda [file] [log] [blame]
import torch
from functools import reduce
from operator import mul
def maybe_view(variable, size, check_same_size=True):
if check_same_size and variable.size() == size:
return variable
return variable.contiguous().view(size)
def maybe_unexpand(variable, old_size, check_same_size=True):
if check_same_size and variable.size() == old_size:
return variable
num_unsqueezed = variable.dim() - len(old_size)
expanded_dims = [dim for dim, (expanded, original)
in enumerate(zip(variable.size()[num_unsqueezed:], old_size))
if expanded != original]
for _ in range(num_unsqueezed):
variable = variable.sum(0, keepdim=False)
for dim in expanded_dims:
variable = variable.sum(dim, keepdim=True)
return variable
_SAME_SIZE = 2
_EXPANDABLE = 1
_NOT_EXPANDABLE = 0
def variable_expandable(variable, old_size):
if variable.size() == old_size:
return _SAME_SIZE
try:
torch._C._infer_size(variable.size(), old_size)
except RuntimeError:
return _NOT_EXPANDABLE
return _EXPANDABLE
def maybe_unexpand_or_view(variable, old_size):
var_expanded = variable_expandable(variable, old_size)
if var_expanded == _SAME_SIZE:
return variable
elif var_expanded == _EXPANDABLE:
return maybe_unexpand(variable, old_size, False)
else:
return maybe_view(variable, old_size, False)
# Generate paddings in ONNX order based on pad in pytorch.
# Arguments:
# dim: the dimension of the tensor.
# pad: the paddings in pytorch.
# The order is dim_n_begin, dim_n_end, dim_n-1_begin, dim_n-1_end, ...
def prepare_onnx_paddings(dim, pad):
assert isinstance(dim, int)
# The order of paddings is dim_0_begin, dim_0_end, dim_1_begin, ... , dim_n_end.
# n is the dimension of input.
assert len(pad) <= dim * 2
paddings = []
# pad is guaranteed to have even elements.
for i, j in zip(pad[0::2], pad[1::2]):
paddings = [i, j] + paddings
while len(paddings) < 2 * dim:
paddings = [0, 0] + paddings
assert len(paddings) == dim * 2
return paddings
# Check whether the op enable broadcasting, and whether it is supported by ONNX.
# If dims1 and dims2 are different, then broadcast is True.
# We always assume the combination of dims1 and dims2 is broadcastable.
# The following types of broadcasting are supported in ONNX:
# 1) Only one element in dims2, such as dims2 = [1, 1]
# 2) dims2 is suffix of dims1, such as dims1 = [2, 3, 4], and dims2 = [3, 4]
# Details can be found here: https://github.com/onnx/onnx/blob/master/docs/Operators.md#Gemm
def check_onnx_broadcast(dims1, dims2):
broadcast = False
supported = True
len1 = len(dims1)
len2 = len(dims2)
numel1 = reduce(lambda x, y: x * y, dims1)
numel2 = reduce(lambda x, y: x * y, dims2)
if len1 < len2:
broadcast = True
if numel2 != 1:
supported = False
elif len1 > len2:
broadcast = True
if numel2 != 1 and dims1[len1 - len2:] != dims2:
supported = False
else:
if dims1 != dims2:
broadcast = True
if numel2 != 1:
supported = False
return broadcast, supported