| #include "THCUNN.h" |
| #include "THCHalf.h" |
| #include "THCHalfAutoNumerics.cuh" |
| #include "THCAtomics.cuh" |
| |
| #define CUDA_MAX_THREADS 1024 // this is safe, in reality 256 is our limit |
| |
| /* |
| * Description: |
| * this function adaptively maxpools an input 4D tensor along dimensions 2 and 3 |
| * 4D input, 4D output, 4D argmax x and y |
| */ |
| template <typename T> |
| __global__ void adaptivemaxpool(T *input, T *output, THCIndex_t *indices_x, THCIndex_t *indices_y, |
| int input_n, int input_h, int input_w, |
| int output_h, int output_w, |
| int strideh, int stridew, |
| int strided) |
| { |
| // iterators |
| int xx, yy; |
| |
| // compute offsets based on thread/block ID |
| int o = blockIdx.x; |
| int i = o; |
| //int k = blockIdx.x % input_n; |
| |
| int xx_start = threadIdx.x; |
| int xx_end = output_w; |
| const int xx_step = blockDim.x; |
| |
| int yy_start = blockDim.y*blockIdx.y + threadIdx.y; |
| int yy_end = output_h; |
| const int yy_step = blockDim.y*gridDim.y; |
| // select input/output plane |
| output = output + o*output_w*output_h; |
| input = input + i*strided; |
| indices_x = indices_x + o*output_w*output_h; |
| indices_y = indices_y + o*output_w*output_h; |
| |
| // For all output pixels... |
| for(yy = yy_start; yy < yy_end; yy+=yy_step) { |
| |
| int y_start = (int)floor(float(yy) / output_h * input_h); |
| int y_end = (int)ceil(float(yy+1) / output_h * input_h); |
| int kH = y_end-y_start; |
| |
| for(xx = xx_start; xx < xx_end; xx+=xx_step) { |
| int x_start = (int)floor(float(xx) / output_w * input_w); |
| int x_end = (int)ceil(float(xx + 1) / output_w * input_w); |
| |
| int kW = x_end-x_start; |
| |
| // Compute the mean of the input image... |
| T *ptr_input = input + y_start*strideh + x_start*stridew; |
| T *ptr_output = output + yy*output_w + xx; |
| THCIndex_t *ptr_ind_x = indices_x + yy*output_w + xx; |
| THCIndex_t *ptr_ind_y = indices_y + yy*output_w + xx; |
| int argmax_x = -1; |
| int argmax_y = -1; |
| T max = THCNumerics<T>::min(); |
| int kx, ky; |
| for(ky = 0; ky < kH; ky++) { |
| for(kx = 0; kx < kW; kx++) { |
| T val = ptr_input[kx*stridew]; |
| if (val > max) { |
| max = val; |
| argmax_x = kx; |
| argmax_y = ky; |
| } |
| } |
| ptr_input += strideh; // next input line |
| } |
| // Update output and argmax |
| *ptr_output = max; |
| *ptr_ind_x = argmax_x + TH_INDEX_BASE; |
| *ptr_ind_y = argmax_y + TH_INDEX_BASE; |
| } |
| } |
| } |
| |
| /* |
| * Description: |
| * this function computes the gradInput from weight and gradOutput |
| */ |
| template <typename T> |
| __global__ void adaptivemaxgradinput(T *gradInput, T *gradOutput, THCIndex_t *indices_x, THCIndex_t *indices_y, |
| int input_n, int input_h, int input_w, |
| int output_h, int output_w) |
| { |
| // iterators |
| int xx, yy; |
| |
| // compute offsets based on thread/block ID |
| int o = blockIdx.x; |
| int i = o; |
| //int k = blockIdx.x % input_n; |
| |
| int xx_start = threadIdx.x; |
| int xx_end = output_w; |
| int xx_step = blockDim.x; |
| |
| int yy_start = blockDim.y*blockIdx.y + threadIdx.y; |
| int yy_end = output_h; |
| int yy_step = blockDim.y*gridDim.y; |
| |
| // select input/output plane |
| gradOutput = gradOutput + o*output_w*output_h; |
| gradInput = gradInput + i*input_w*input_h; |
| indices_x = indices_x + o*output_w*output_h; |
| indices_y = indices_y + o*output_w*output_h; |
| |
| // compute gradInput |
| for(yy = yy_start; yy < yy_end; yy+=yy_step) { |
| |
| int y_start = (int)floor(float(yy) / output_h * input_h); |
| |
| for(xx = xx_start; xx < xx_end; xx+=xx_step) { |
| |
| int x_start = (int)floor(float(xx) / output_w * input_w); |
| |
| T *ptr_gradInput = gradInput + y_start*input_w + x_start; |
| T *ptr_gradOutput = gradOutput + yy*output_w + xx; |
| THCIndex_t *ptr_ind_x = indices_x + yy*output_w + xx; |
| THCIndex_t *ptr_ind_y = indices_y + yy*output_w + xx; |
| T z = *ptr_gradOutput; |
| |
| int argmax_x = (*ptr_ind_x) - TH_INDEX_BASE; |
| int argmax_y = (*ptr_ind_y) - TH_INDEX_BASE; |
| |
| ptr_gradInput[argmax_x + argmax_y*input_w] += z; |
| } |
| } |
| } |
| |
| /* |
| * Description: |
| * this function computes the gradInput from weight and gradOutput |
| * when kH != dH or kW != dW (uses atomic add) |
| */ |
| template <typename T> |
| __global__ void atomicadaptivemaxgradinput( |
| T *gradInput, T *gradOutput, THCIndex_t *indices_x, THCIndex_t *indices_y, |
| int input_n, int input_h, int input_w, int output_h, int output_w |
| ) |
| { |
| // iterators |
| int xx, yy; |
| |
| // compute offsets based on thread/block ID |
| int o = blockIdx.x; |
| int i = o; |
| |
| int xx_start = threadIdx.x; |
| int xx_end = output_w; |
| int xx_step = blockDim.x; |
| |
| int yy_start = blockDim.y*blockIdx.y + threadIdx.y; |
| int yy_end = output_h; |
| int yy_step = blockDim.y*gridDim.y; |
| |
| // select input/output plane |
| gradOutput = gradOutput + o*output_w*output_h; |
| gradInput = gradInput + i*input_w*input_h; |
| indices_x = indices_x + o*output_w*output_h; |
| indices_y = indices_y + o*output_w*output_h; |
| |
| // compute gradInput |
| for(yy = yy_start; yy < yy_end; yy+=yy_step) { |
| |
| int y_start = (int)floor(float(yy) / output_h * input_h); |
| |
| for(xx = xx_start; xx < xx_end; xx+=xx_step) { |
| |
| int x_start = (int)floor(float(xx) / output_w * input_w); |
| |
| T *ptr_gradInput = gradInput + y_start*input_w + x_start; |
| T *ptr_gradOutput = gradOutput + yy*output_w + xx; |
| THCIndex_t *ptr_ind_x = indices_x + yy*output_w + xx; |
| THCIndex_t *ptr_ind_y = indices_y + yy*output_w + xx; |
| T z = *ptr_gradOutput; |
| |
| int argmax_x = (*ptr_ind_x) - TH_INDEX_BASE; |
| int argmax_y = (*ptr_ind_y) - TH_INDEX_BASE; |
| |
| // atomic add since different threads could update same variable |
| atomicAdd(&(ptr_gradInput[argmax_x + argmax_y*input_w]), z); |
| } |
| } |
| } |
| |
| #include "generic/SpatialAdaptiveMaxPooling.cu" |
| #include "THCGenerateFloatTypes.h" |
| |
| #undef CUDA_MAX_THREADS |