blob: d3df371b19af934e04b5312d6d845c1e15feac0e [file] [log] [blame]
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <atomic>
#include <condition_variable>
#include <memory>
#include <mutex>
#include <queue>
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/stats.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
// TODO: This is a very naive implementation with a single mutex. We can do the
// atomic index + circular queue optimizations or pull something more
// heavy-weight later
class RebatchingQueue {
public:
RebatchingQueue(size_t capacity, size_t numBlobs);
~RebatchingQueue();
bool enqueueOne(
CPUContext& context,
const std::vector<const TensorCPU*>& inputs);
bool enqueueMany(
CPUContext& context,
const std::vector<const TensorCPU*>& inputs);
bool dequeue(
CPUContext& context,
size_t numElements,
const std::vector<TensorCPU*>& outputs);
size_t capacity() const;
size_t numBlobs() const;
bool isClosed() const;
void close();
private:
bool enqueue(std::vector<std::vector<TensorCPU>> splittedInputs);
bool canWrite() const;
bool canRead() const;
const size_t capacity_;
const size_t numBlobs_;
mutable std::mutex mutex_;
bool isClosed_{false};
uint64_t head_{0};
uint64_t tail_{0};
std::condition_variable cvEmpty_;
std::condition_variable cvOverflow_;
std::vector<std::vector<TensorCPU>> queue_;
};
} // caffe2