blob: f75be3eaf11f5ba7dbf2411351b6a80064edb66e [file] [log] [blame]
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "caffe2/operators/normalize_op.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <typename T, class Context>
void NormalizeOp<T, Context>::DoNormalize(
const T* xData,
T* yData,
const int m,
const int n,
const int sf) {
using InnerStride = Eigen::InnerStride<Eigen::Dynamic>;
using StridedVec =
Eigen::Map<Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
using ConstStridedVec =
Eigen::Map<const Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
for (int i = 0; i < n; ++i) {
auto base = (i / sf) * sf * m + (i % sf);
ConstStridedVec xVec(xData + base, 1, m, InnerStride(sf));
auto norm = xVec.template lpNorm<2>();
if (norm != 0) {
StridedVec yVec(yData + base, 1, m, InnerStride(sf));
yVec = xVec / norm;
}
}
};
template <typename T, class Context>
void NormalizeGradientOp<T, Context>::DoNormalize(
const T* xData,
const T* gOutData,
T* gInData,
const int m,
const int n,
const int sf) {
using InnerStride = Eigen::InnerStride<Eigen::Dynamic>;
using StridedVec =
Eigen::Map<Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
using ConstStridedVec =
Eigen::Map<const Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
for (int i = 0; i < n; ++i) {
auto base = (i / sf) * sf * m + (i % sf);
ConstStridedVec xVec(xData + base, 1, m, InnerStride(sf));
ConstStridedVec gOutVec(gOutData + base, 1, m, InnerStride(sf));
auto row_sum = xVec.dot(gOutVec);
auto row_norm = xVec.template lpNorm<2>();
auto row_norm_3 = pow(row_norm, 3);
if (row_norm != 0) {
StridedVec gInVec(gInData + base, 1, m, InnerStride(sf));
gInVec = (gOutVec / row_norm) - ((xVec / row_norm_3) * row_sum);
}
}
};
REGISTER_CPU_OPERATOR(Normalize, NormalizeOp<float, CPUContext>);
OPERATOR_SCHEMA(Normalize)
.NumInputs(1)
.NumOutputs(1)
.Arg("axis", "axis to normalize")
.SetDoc(R"DOC(
Given a matrix, apply L2-normalization along the specified dimension.
)DOC")
.IdenticalTypeAndShape();
REGISTER_CPU_OPERATOR(
NormalizeGradient,
NormalizeGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(NormalizeGradient)
.NumInputs(2)
.NumOutputs(1)
.Arg("axis", "axis to normalize");
class GetNormalizeGradient final : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
CAFFE_ENFORCE_EQ(def_.input_size(), 1);
return SingleGradientDef(
"NormalizeGradient",
"",
vector<string>{I(0), GO(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(Normalize, GetNormalizeGradient);
template <typename T, class Context>
void NormalizeL1Op<T, Context>::DoNormalize(
const T* xData,
T* yData,
const int m,
const int n,
const int sf) {
using InnerStride = Eigen::InnerStride<Eigen::Dynamic>;
using StridedVec =
Eigen::Map<Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
using ConstStridedVec =
Eigen::Map<const Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
for (int i = 0; i < n; ++i) {
auto base = (i / sf) * sf * m + (i % sf);
ConstStridedVec xVec(xData + base, 1, m, InnerStride(sf));
auto norm = xVec.template lpNorm<1>();
if (norm != 0) {
StridedVec yVec(yData + base, 1, m, InnerStride(sf));
yVec = xVec / norm;
}
}
};
REGISTER_CPU_OPERATOR(NormalizeL1, NormalizeL1Op<float, CPUContext>);
OPERATOR_SCHEMA(NormalizeL1)
.NumInputs(1)
.NumOutputs(1)
.Arg("axis", "axis to normalize")
.SetDoc(R"DOC(
Given a matrix, apply L1-normalization along the specified axis.
)DOC");
} // namespace caffe2