| """TorchScript |
| |
| This module contains functionality to support the JIT's scripting frontend, notably: |
| - torch.jit.script |
| |
| This is not intended to be imported directly; please use the exposed |
| functionalities in `torch.jit`. |
| """ |
| import functools |
| import collections |
| import inspect |
| import copy |
| import pickle |
| import warnings |
| from typing import Any, Dict |
| |
| |
| import torch |
| import torch._jit_internal as _jit_internal |
| from torch.utils import set_module |
| from torch.jit._recursive import ScriptMethodStub, wrap_cpp_module, infer_methods_to_compile |
| from torch.nn import Module |
| from torch.jit._state import _enabled |
| from torch.jit._builtins import _register_builtin |
| from torch._six import with_metaclass, get_function_from_type |
| from torch.jit.frontend import get_jit_def, get_default_args, get_jit_class_def |
| from torch._jit_internal import _qualified_name |
| from torch.jit._fuser import _graph_for |
| from torch.jit._state import ( |
| _try_get_jit_cached_function, |
| _try_get_jit_cached_overloads, |
| _set_jit_function_cache, |
| _set_jit_overload_cache, |
| ) |
| |
| torch._C.ScriptMethod.graph_for = _graph_for # type: ignore |
| torch._C.ScriptFunction.graph_for = _graph_for # type: ignore |
| ScriptFunction = torch._C.ScriptFunction |
| ScriptFunction.__doc__ = """ |
| Functionally equivalent to a :class:`ScriptModule`, but represents a single |
| function and does not have any attributes or Parameters. |
| """ |
| set_module(ScriptFunction, "torch.jit") |
| |
| |
| if _enabled: |
| Attribute = collections.namedtuple("Attribute", ["value", "type"]) |
| else: |
| |
| def Attribute(value, type): # type: ignore |
| return value |
| |
| |
| # ScriptClasses must be new-style classes because we construct them using their |
| # __new__ method. |
| def _is_new_style_class(cls): |
| if hasattr(cls, "__class__"): |
| return "__dict__" in dir(cls) or hasattr(cls, "__slots__") |
| |
| |
| def _compile_and_register_class(obj, rcb, qualified_name): |
| ast = get_jit_class_def(obj, obj.__name__) |
| defaults = torch.jit.frontend.get_default_args_for_class(obj) |
| torch._C._jit_script_class_compile(qualified_name, ast, defaults, rcb) |
| torch.jit._state._add_script_class(obj, qualified_name) |
| |
| |
| # These OrderedDictWrapper classes replace the actual OrderedDicts in |
| # module with versions that get/set properties inside of Module. |
| # This allows us to reuse most of nn.Module while still storing the |
| # data in C++. |
| # Each OrderedDict needs to support: |
| # x not in view |
| # x in view |
| # view[name] = ... |
| # view.values() |
| # del view[name] |
| # view.items() |
| # view.keys() |
| # len(view) |
| |
| |
| class OrderedDictWrapper(object): |
| def __init__(self, _c): |
| self._c = _c |
| |
| def keys(self): |
| return [k for k, v in self.items()] |
| |
| def values(self): |
| return [v for k, v in self.items()] |
| |
| def __len__(self): |
| return len(self.values()) |
| |
| def __delitem__(self, k): |
| raise RuntimeError("cannot delete methods or parameters of a script module") |
| |
| def items(self): |
| return self._c.items() |
| |
| def __setitem__(self, k, v): |
| if k not in self: |
| raise RuntimeError( |
| "Can't add a new parameter after ScriptModule construction." |
| " Tried to add '{}".format(k) |
| ) |
| self._c.setattr(k, v) |
| |
| def __contains__(self, k): |
| return self._c.contains(k) |
| |
| def __getitem__(self, k): |
| if k not in self: |
| raise KeyError(k) |
| return self._c.getattr(k) |
| |
| |
| class OrderedModuleDict(OrderedDictWrapper): |
| def __init__(self, module, python_dict): |
| super(OrderedModuleDict, self).__init__(torch._C.ModuleDict(module)) |
| # contains _both_ script modules and non-script python-only modules |
| |
| # because script modules are subclassed in python and the |
| # C++ Module class will not hold references to them, |
| # to ensure that you always get the same python value here |
| # we store it in the python dict as well |
| self._python_modules = python_dict |
| |
| def items(self): |
| r = self._python_modules.items() |
| return r |
| |
| def __contains__(self, k): |
| return k in self._python_modules |
| |
| def __setitem__(self, k, v): |
| # Cases where sub-module can be re-assigned after ScriptModule construction |
| # 1. If the attr is an module interface type, it's guaranteed that the module is |
| # not inlined in the graph, so it's safe to swap a new ScriptModule in. |
| # 2. if the new value if a ScriptModule with the same JIT type, IR won't change |
| # and it's legit to swap a new module in. |
| # In these two cases we allow swapping a new scripted module and update the |
| # corresponding python module dict to keep sync. |
| # Note: the value to be swapped in has to be ScriptModule instead of nn.Module, |
| # otherwise it's illegal and we throw error. |
| if isinstance(v, ScriptModule): |
| self._c.setattr(k, v) |
| self._python_modules[k] = v |
| else: |
| raise RuntimeError( |
| "Cannot re-assign modules in a ScriptModule with non-scripted " |
| "module, tried to replace existing module '{}': {}".format(k, v) |
| ) |
| |
| def __getitem__(self, k): |
| return self._python_modules[k] |
| |
| |
| # For each user-defined class that subclasses ScriptModule, this meta-class: |
| # (1) finds all the methods annotated with @script_method in a ScriptModule and |
| # removes them from the class attributes |
| # (2) puts a wrapper around the class's __init__ method to recusively compile |
| # all of the script_methods with the module after the original __init__ has |
| # run. This has to occur after the user-defined __init__ so that submodules and |
| # parameters are initialized _before_ the script compiler resolve references to |
| # `self.param` or `self.module`. |
| class ScriptMeta(type): |
| def __init__(cls, name, bases, attrs): # noqa: B902 |
| # Aggregate all the ScriptMethods and constants from superclasses |
| cls._methods: Dict[str, Any] = {} |
| cls._constants_set = set(getattr(cls, "__constants__", ())) |
| for base in reversed(bases): |
| for k, v in getattr(base, "_methods", {}).items(): |
| cls._methods[k] = v |
| base_constants = getattr(base, "_constants_set", set()) |
| cls._constants_set = cls._constants_set.union(base_constants) |
| |
| # find all the script methods of the current class |
| for k, v in sorted(attrs.items()): |
| if isinstance(v, ScriptMethodStub): |
| delattr(cls, k) |
| cls._methods[v.original_method.__name__] = v |
| |
| if getattr(cls, "_disable_script_meta", False): |
| # We leave built-in ScriptModule types alone, since this metaclass |
| # is only for compiling user classes that inherit from |
| # ScriptModule. |
| return super(ScriptMeta, cls).__init__(name, bases, attrs) |
| |
| original_init = getattr(cls, "__init__", lambda self: None) |
| |
| @functools.wraps(original_init) |
| def init_then_script(self, *args, **kwargs): |
| num_methods = len(cls._methods) |
| original_init(self, *args, **kwargs) |
| added_methods_in_init = len(cls._methods) > num_methods |
| |
| if type(self) == cls: |
| |
| def make_stubs(module): |
| cls = type(module) |
| if hasattr(cls, "_methods"): |
| return [v for k, v in sorted(cls._methods.items())] |
| else: |
| return infer_methods_to_compile(module) |
| |
| self.__dict__[ |
| "_actual_script_module" |
| ] = torch.jit._recursive.create_script_module(self, make_stubs, share_types=not added_methods_in_init) |
| |
| # Delete the Python attributes that now shadow the ScriptModule |
| # ones, so that __getattr__ and __setattr__ will properly find |
| # the scripted versions. |
| concrete_type = self._actual_script_module._concrete_type |
| for name in concrete_type.get_attributes(): |
| delattr(self, name) |
| for name, _ in concrete_type.get_modules(): |
| delattr(self, name) |
| for name in ("_parameters", "_buffers", "_modules"): |
| delattr(self, name) |
| |
| cls.__init__ = init_then_script # type: ignore |
| return super(ScriptMeta, cls).__init__(name, bases, attrs) |
| |
| |
| class _CachedForward(object): |
| def __get__(self, obj, cls): |
| return self.__getattr__("forward") # type: ignore |
| |
| |
| class ScriptWarning(Warning): |
| pass |
| |
| |
| def script_method(fn): |
| if not _enabled: |
| return fn |
| # NOTE: we need to traverse two frames here because the meta-class frame |
| # for ScriptModule will be present, as opposed to invoking @script on a |
| # a function or invoking define() on a CompilationUnit. |
| # The stack will look like: |
| # |
| # 0. createResolutionCallback() |
| # 1. script_method() |
| # 2. ScriptModule metaclass frame |
| # 3. Surrounding scope |
| # |
| # createResolutionCallback internally adds 1 to get us to the scope of this |
| # function (the calling function). Adding 2 gets us to the proper surrounding scope. |
| _rcb = _jit_internal.createResolutionCallbackFromFrame(frames_up=2) |
| ast = get_jit_def(fn, fn.__name__, self_name="ScriptModule") |
| return ScriptMethodStub(_rcb, ast, fn) |
| |
| |
| class ConstMap: |
| def __init__(self, const_mapping): |
| self.const_mapping = const_mapping |
| |
| def __getattr__(self, attr): |
| return self.const_mapping[attr] |
| |
| |
| if _enabled: |
| # this is a Python 'non-data descriptor' that causes the first access |
| # to ScriptModule's forward to lookup the forward method and stash |
| # it in the objects dict. Due to the standard rules for attribute lookup |
| # subsequent lookups will just directly return the previously looked up method. |
| # This is necessary because nn.Module defines forward as a method. If we |
| # did nothing __getattr__ would not be called. Instead we'd get nn.Module.forward |
| # which always throws an exception. |
| |
| class ScriptModule(with_metaclass(ScriptMeta, Module)): # type: ignore |
| """ |
| ``ScriptModule``s wrap a C++ ``torch::jit::Module``. ``ScriptModule``s |
| contain methods, attributes, parameters, and |
| constants. These can be accessed the same as on a normal ``nn.Module``. |
| """ |
| __jit_unused_properties__ = ['code', 'code_with_constants', 'graph', 'inlined_graph', 'original_name'] |
| |
| def __init__(self): |
| super(ScriptModule, self).__init__() |
| |
| forward = _CachedForward() |
| |
| def __getattr__(self, attr): |
| if "_actual_script_module" not in self.__dict__: |
| return super(ScriptModule, self).__getattr__(attr) |
| return getattr(self._actual_script_module, attr) |
| |
| def __setattr__(self, attr, value): |
| if "_actual_script_module" not in self.__dict__: |
| # Unwrap torch.jit.Attribute into a regular setattr + recording |
| # the provided type in __annotations__. |
| # |
| # This ensures that if we use the attr again in `__init__`, it |
| # will look like the actual value, not an instance of Attribute. |
| if isinstance(value, Attribute): |
| # NB: Ensure that we set __annotations__ on the specific |
| # class in question, and not on a superclass (which would |
| # be wrong wrong wrong!). |
| # See also https://github.com/pytorch/pytorch/issues/39463 |
| if "__annotations__" not in self.__class__.__dict__: |
| self.__class__.__annotations__ = {} |
| self.__annotations__[attr] = value.type |
| value = value.value |
| return super(ScriptModule, self).__setattr__(attr, value) |
| |
| setattr(self._actual_script_module, attr, value) |
| |
| def define(self, src): |
| if "_actual_script_module" in self.__dict__: |
| # If we have completed initialization, just defer to the |
| # backing RecursiveScriptModule to eagerly compile the provided |
| # source. |
| return self._actual_script_module.define(src) |
| |
| # Otherwise, we are still in the object's __init__. |
| # In that case, add `src` as a stub to be compiled. |
| # |
| # We use frames_up=1 to get to the proper surrounding scope. The stack |
| # will look like: |
| # 0. createResolutionCallback |
| # 1. define() |
| # 2. surrounding scope. |
| # |
| # createResolutionCallback internally adds 1 to get us to our frame, then |
| # we add 1 to get to the proper surrounding scope. |
| rcb = _jit_internal.createResolutionCallbackFromFrame(frames_up=1) |
| ast = torch._C._parse_source_def(src) |
| self._methods[ast.name().name] = ScriptMethodStub(rcb, ast, None) |
| |
| def _replicate_for_data_parallel(self): |
| return self._actual_script_module._replicate_for_data_parallel() |
| |
| class RecursiveScriptModule(ScriptModule): |
| # XXX: RecursiveScriptModule inherits from ScriptModule for the sole |
| # reason that it retains the existing isinstance(ScriptModule) |
| # behavior. |
| r""" |
| The core data structure in TorchScript is the ``ScriptModule``. It is an |
| analogue of torch's ``nn.Module`` and represents an entire model as a tree of |
| submodules. Like normal modules, each individual module in a ``ScriptModule`` can |
| have submodules, parameters, and methods. In ``nn.Module``\s methods are implemented |
| as Python functions, but in ``ScriptModule``\s methods are implemented as |
| TorchScript functions, a statically-typed subset of Python that contains all |
| of PyTorch's built-in Tensor operations. This difference allows your |
| ``ScriptModule``\s code to run without the need for a Python interpreter. |
| |
| ``ScriptModule``\s should not be created manually, instead use |
| either :func:`tracing <torch.jit.trace>` or :func:`scripting <torch.jit.script>`. |
| Tracing and scripting can be applied incrementally and :ref:`composed as necessary <Types>`. |
| |
| * Tracing records the tensor operations as executed with a set of example inputs and uses these |
| operations to construct a computation graph. You can use the full dynamic behavior of Python with tracing, |
| but values other than Tensors and control flow aren't captured in the graph. |
| |
| * Scripting inspects the Python code of the model |
| and compiles it to TorchScript. Scripting allows the use of many `types`_ of values and supports dynamic control flow. |
| Many, but not all features of Python are supported by the compiler, so changes to the source code may be necessary. |
| """ |
| _disable_script_meta = True |
| |
| def __init__(self, cpp_module): |
| self.__dict__["_initializing"] = True |
| self._c = cpp_module |
| super(RecursiveScriptModule, self).__init__() |
| # Delete the 'training' attribute set up by `Module.__init__`. It |
| # will get set on the underlying cpp module, so we delete it here |
| # to avoid this version shadowing the cpp module version. |
| delattr(self, "training") |
| |
| @staticmethod |
| def _construct(cpp_module, init_fn): |
| """ |
| Construct a RecursiveScriptModule that's ready for use. PyTorch |
| code should use this to construct a RecursiveScriptModule instead |
| of instead of calling `__init__` directly, as it makes sure the |
| object is properly finalized (and in the future we may take |
| control of how the RecursiveScriptModule instance is created). |
| |
| Arguments: |
| cpp_module: The C++ Module that will hold the actual state of |
| this RecursiveScriptModule instance. |
| init_fn: Lambda that initializes the RecursiveScriptModule passed to it. |
| """ |
| script_module = RecursiveScriptModule(cpp_module) |
| init_fn(script_module) |
| |
| # Finalize the ScriptModule: replace the nn.Module state with our |
| # custom implementations and flip the _initializing bit. |
| RecursiveScriptModule._finalize_scriptmodule(script_module) |
| return script_module |
| |
| @staticmethod |
| def _finalize_scriptmodule(script_module): |
| script_module._parameters = OrderedDictWrapper( |
| torch._C.ParameterDict(script_module._c) |
| ) |
| script_module._buffers = OrderedDictWrapper( |
| torch._C.BufferDict(script_module._c) |
| ) |
| script_module._modules = OrderedModuleDict( |
| script_module._c, script_module._modules |
| ) |
| script_module._initializing = False |
| |
| def _reconstruct(self, cpp_module): |
| """ |
| Re-construct an instance of RecursiveScriptModule using an instance of a C++ module. |
| |
| Arguments: |
| cpp_module: The C++ module that this RecursiveScriptModule will be rebuilt around. |
| """ |
| self.__init__(cpp_module) # type: ignore |
| |
| # Copy the concrete type from the C++ module to this ScriptModule. |
| self._concrete_type = torch._C.ConcreteModuleType.from_jit_type( |
| self._c._type() |
| ) |
| |
| # Copy submodules from the C++ module to this ScriptModule. |
| modules = {} |
| for name, cpp_module in torch._C.ModuleDict(self._c).items(): |
| modules[name] = wrap_cpp_module(cpp_module) |
| self._modules = OrderedModuleDict(self._c, modules) |
| |
| # Copy parameters and buffers. |
| self._parameters = OrderedDictWrapper(torch._C.ParameterDict(self._c)) |
| self._buffers = OrderedDictWrapper(torch._C.BufferDict(self._c)) |
| |
| # Get rid of the functions from the old C++ module. |
| self.__dict__ = { |
| k: v |
| for k, v in self.__dict__.items() |
| if not isinstance(v, torch._C.ScriptMethod) |
| } |
| self.__dict__["_initializing"] = False |
| |
| @property |
| def graph(self): |
| r""" |
| Returns a string representation of the internal graph for the |
| ``forward`` method. See :ref:`interpreting-graphs` for details. |
| """ |
| return self._c._get_method("forward").graph |
| |
| @property |
| def inlined_graph(self): |
| r""" |
| Returns a string representation of the internal graph for the |
| ``forward`` method. This graph will be preprocessed to inline all function and method calls. |
| See :ref:`interpreting-graphs` for details. |
| """ |
| return self.forward.inlined_graph |
| |
| @property |
| def code(self): |
| r""" |
| Returns a pretty-printed representation (as valid Python syntax) of |
| the internal graph for the ``forward`` method. See |
| :ref:`inspecting-code` for details. |
| """ |
| return self.forward.code |
| |
| @property |
| def code_with_constants(self): |
| r""" |
| Returns a tuple of: |
| |
| [0] a pretty-printed representation (as valid Python syntax) of |
| the internal graph for the ``forward`` method. See `code`. |
| [1] a ConstMap following the CONSTANT.cN format of the output in [0]. |
| The indices in the [0] output are keys to the underlying constant's values. |
| |
| See :ref:`inspecting-code` for details. |
| """ |
| r = self.forward.code_with_constants |
| return (r[0], ConstMap(r[1])) |
| |
| def save(self, f, **kwargs): |
| r""" |
| save(f, _extra_files={}) |
| |
| See :func:`torch.jit.save <torch.jit.save>` for details. |
| """ |
| return self._c.save(str(f), **kwargs) |
| |
| def _save_for_lite_interpreter(self, *args, **kwargs): |
| r""" |
| _save_for_lite_interpreter(f) |
| |
| Add (or update) the bytecode session to the script model. The updated model is used |
| in lite interpreter for mobile applications. |
| |
| Arguments: |
| f: a string containing a file name. |
| _extra_files: Map from filename to contents which will be stored as part of 'f'. |
| |
| """ |
| return self._c._save_for_mobile(*args, **kwargs) |
| |
| def _save_to_buffer_for_lite_interpreter(self, *args, **kwargs): |
| return self._c._save_to_buffer_for_mobile(*args, **kwargs) |
| |
| def save_to_buffer(self, *args, **kwargs): |
| return self._c.save_to_buffer(*args, **kwargs) |
| |
| def get_debug_state(self, *args, **kwargs): |
| return self._c.get_debug_state() |
| |
| def extra_repr(self): |
| return "original_name={}".format(self.original_name) |
| |
| def graph_for(self, *args, **kwargs): |
| return self.forward.graph_for(*args, **kwargs) |
| |
| @property |
| def original_name(self): |
| if type(self) == str(self._c._type().name()): |
| return "" |
| return str(self._c._type().name()) |
| |
| def define(self, src): |
| # We use frames_up=1 to get to the proper surrounding scope. The stack |
| # will look like: |
| # 0. createResolutionCallback |
| # 1. define() |
| # 2. surrounding scope. |
| # |
| # createResolutionCallback internally adds 1 to get us to our frame, then |
| # we add 1 to get to the proper surrounding scope. |
| rcb = _jit_internal.createResolutionCallbackFromFrame(frames_up=1) |
| self._c._define(self._concrete_type, src, rcb) |
| |
| def __getattr__(self, attr): |
| if "_initializing" not in self.__dict__: |
| raise RuntimeError( |
| "ScriptModule has not been initialized, did you forget to call super's init?" |
| ) |
| |
| if self._initializing: |
| return super(RecursiveScriptModule, self).__getattr__(attr) |
| |
| # _modules check is before hasattr since modules are included as attributes in _c, |
| # but we want to get the python wrapper from _modules instead of the raw _c object. |
| if attr in self._modules: |
| return self._modules[attr] |
| elif self._c.hasattr(attr): |
| return self._c.getattr(attr) |
| elif self._c._has_method(attr): |
| script_method = self._c._get_method(attr) |
| # cache method so future calls do not go through __getattr__ |
| # to improve invocation performance |
| self.__dict__[attr] = script_method |
| return script_method |
| |
| return super(RecursiveScriptModule, self).__getattr__(attr) |
| |
| def __setattr__(self, attr, value): |
| if self._initializing: |
| return super(RecursiveScriptModule, self).__setattr__(attr, value) |
| |
| if attr in self._modules: |
| self._modules[attr] = value |
| elif self._c.hasattr(attr): |
| self._c.setattr(attr, value) |
| elif ( |
| hasattr(self, "_concrete_type") |
| and attr in self._concrete_type.get_constants().keys() |
| ): |
| # TODO: we don't have _concrete_type set after load(), and in general we lose constant information. |
| # We should encode constants as class type attributes (or something) so it persists across save/load. |
| raise AttributeError( |
| "Cannot mutate TorchScript constant value: '{}'. Value: '{}'".format( |
| attr, value |
| ) |
| ) |
| else: |
| # We allow setting Python attributes on the ScriptModule, for |
| # when people want to stash some convenience info on it. |
| # TODO: it's possible that the following is confusing: |
| # s = torch.jit.script(...) |
| # s.python_attr = ... |
| # s.save() <--- this doesn't have `python_attr` |
| # It's fairly trivial to save enough info to warn in this case. |
| return super(RecursiveScriptModule, self).__setattr__(attr, value) |
| |
| def __getstate__(self): |
| raise pickle.PickleError( |
| "ScriptModules cannot be deepcopied using copy.deepcopy or saved using torch.save. " |
| + "Mixed serialization of script and non-script modules is not supported. " |
| + "For purely script modules use my_script_module.save(<filename>) instead." |
| ) |
| |
| def __copy__(self): |
| return torch.jit._recursive.wrap_cpp_module(copy.copy(self._c)) |
| |
| def __deepcopy__(self, memo): |
| return torch.jit._recursive.wrap_cpp_module(copy.deepcopy(self._c, memo)) |
| |
| # Python magic methods do method lookups on an object's class type, instead of looking up |
| # the method defines on the class instance. In order to continue to expose the magic methods |
| # of builtin-containers (ModuleList, Sequential, ModuleDict) to python we |
| # define magic methods here as a shim to the correct attribute. |
| def forward_magic_method(self, method_name, *args, **kwargs): |
| self_method = getattr(self, method_name) |
| if getattr(self_method, "__func__", None) == getattr( |
| RecursiveScriptModule, method_name |
| ): |
| raise NotImplementedError() |
| return self_method(*args, **kwargs) |
| |
| def __iter__(self): |
| return self.forward_magic_method("__iter__") |
| |
| def __getitem__(self, idx): |
| return self.forward_magic_method("__getitem__", idx) |
| |
| def __len__(self): |
| return self.forward_magic_method("__len__") |
| |
| def __contains__(self, key): |
| return self.forward_magic_method("__contains__", key) |
| |
| # dir is defined by the base nn.Module, so instead of throwing if |
| # it is not overriden, we call into the nn.Module __dir__ method |
| def __dir__(self): |
| self_method = self.__dir__ |
| if self_method.__func__ == get_function_from_type( # type: ignore |
| RecursiveScriptModule, "__dir__" |
| ): |
| return super(RecursiveScriptModule, self).__dir__() |
| return self_method() |
| |
| # to resolve bool(value), python looks if __bool__ is defined then __iter__ |
| # is defined then returns true for classes. because __iter__() on this |
| # class throws if it isn't overriden, we define __bool__ to preserve default behavior |
| def __bool__(self): |
| self_method = self.__bool__ |
| if self_method.__func__ == get_function_from_type( # type: ignore |
| RecursiveScriptModule, "__bool__" |
| ): |
| return True |
| return self_method() |
| |
| def _replicate_for_data_parallel(self): |
| # we have to initialize ScriptModule properly so that |
| # it works with pybind11 |
| def init_fn(script_module): |
| # Don't do anything here, we'll initialize the ScriptModule below |
| return |
| |
| return RecursiveScriptModule._construct( |
| self._c._replicate_for_data_parallel(), init_fn |
| ) |
| |
| # Need to copy all RecursiveScriptModule methods to ScriptModule. |
| # |
| # This is because `super(MyScriptModule, self).foo()` does not use |
| # `__getattr__` to look up `foo`. So we need to make each method available on |
| # the ScriptModule manually. |
| for name, item in RecursiveScriptModule.__dict__.items(): |
| if not callable(item) and not isinstance(item, property): |
| continue |
| if name.startswith("__") or hasattr(ScriptModule, name): |
| continue |
| # We can copy over the implementation wholesale because besides the |
| # `super()` thing above, ScriptModule behaves exactly like |
| # RecursiveScriptModule |
| setattr(ScriptModule, name, item) |
| |
| def _get_methods(cls): |
| import inspect |
| |
| # In Python 3 unbound methods are functions, but in Python 2 they are methods |
| return inspect.getmembers( |
| cls, predicate=lambda x: inspect.isfunction(x) or inspect.ismethod(x) |
| ) |
| |
| _compiled_methods_allowlist = { |
| "forward", |
| "register_buffer", |
| "register_parameter", |
| "add_module", |
| "_apply", |
| "apply", |
| "cuda", |
| "cpu", |
| "to", |
| "type", |
| "float", |
| "double", |
| "half", |
| "state_dict", |
| "_save_to_state_dict", |
| "load_state_dict", |
| "_load_from_state_dict", |
| "_named_members", |
| "parameters", |
| "named_parameters", |
| "buffers", |
| "named_buffers", |
| "children", |
| "named_children", |
| "modules", |
| "named_modules", |
| "zero_grad", |
| "share_memory", |
| "_get_name", |
| "extra_repr", |
| "_slow_forward", |
| "_tracing_name", |
| "eval", |
| "train", |
| } |
| |
| def _make_fail(name): |
| def fail(self, *args, **kwargs): |
| raise RuntimeError(name + " is not supported on ScriptModules") |
| |
| return fail |
| |
| for name, method in _get_methods(torch.nn.Module): |
| if name.startswith("__"): |
| continue |
| if ( |
| name not in RecursiveScriptModule.__dict__ |
| and name not in _compiled_methods_allowlist |
| ): |
| setattr(RecursiveScriptModule, method.__name__, _make_fail(name)) |
| |
| |
| else: |
| # TODO MAKE SURE THAT DISABLING WORKS |
| class ScriptModule(torch.nn.Module): # type: ignore |
| def __init__(self, arg=None): |
| super().__init__() |
| |
| class RecursiveScriptModule(ScriptModule): # type: ignore |
| def __init__(self, arg=None): |
| super().__init__() |
| |
| |
| def script(obj, optimize=None, _frames_up=0, _rcb=None): |
| r""" |
| Scripting a function or ``nn.Module`` will inspect the source code, compile |
| it as TorchScript code using the TorchScript compiler, and return a :class:`ScriptModule` or |
| :class:`ScriptFunction`. TorchScript itself is a subset of the Python language, so not all |
| features in Python work, but we provide enough functionality to compute on |
| tensors and do control-dependent operations. For a complete guide, see the |
| :ref:`language-reference`. |
| |
| ``torch.jit.script`` can be used as a function for modules and functions, and as a decorator |
| ``@torch.jit.script`` for :ref:`torchscript-classes` and functions. |
| |
| Arguments: |
| obj (callable, class, or ``nn.Module``): The ``nn.Module``, function, or class type to |
| compile. |
| |
| Returns: |
| If ``obj`` is ``nn.Module``, ``script`` returns |
| a :class:`ScriptModule` object. The returned :class:`ScriptModule` will |
| have the same set of sub-modules and parameters as the |
| original ``nn.Module``. If ``obj`` is a standalone function, |
| a :class:`ScriptFunction` will be returned. |
| |
| **Scripting a function** |
| The ``@torch.jit.script`` decorator will construct a :class:`ScriptFunction` |
| by compiling the body of the function. |
| |
| Example (scripting a function): |
| |
| .. testcode:: |
| |
| import torch |
| |
| @torch.jit.script |
| def foo(x, y): |
| if x.max() > y.max(): |
| r = x |
| else: |
| r = y |
| return r |
| |
| print(type(foo)) # torch.jit.ScriptFuncion |
| |
| # See the compiled graph as Python code |
| print(foo.code) |
| |
| # Call the function using the TorchScript interpreter |
| foo(torch.ones(2, 2), torch.ones(2, 2)) |
| |
| .. testoutput:: |
| :hide: |
| |
| ... |
| |
| **Scripting an nn.Module** |
| Scripting an ``nn.Module`` by default will compile the ``forward`` method and recursively |
| compile any methods, submodules, and functions called by ``forward``. If a ``nn.Module`` only uses |
| features supported in TorchScript, no changes to the original module code should be necessary. ``script`` |
| will construct :class:`ScriptModule` that has copies of the attributes, parameters, and methods of |
| the original module. |
| |
| Example (scripting a simple module with a Parameter): |
| |
| .. testcode:: |
| |
| import torch |
| |
| class MyModule(torch.nn.Module): |
| def __init__(self, N, M): |
| super(MyModule, self).__init__() |
| # This parameter will be copied to the new ScriptModule |
| self.weight = torch.nn.Parameter(torch.rand(N, M)) |
| |
| # When this submodule is used, it will be compiled |
| self.linear = torch.nn.Linear(N, M) |
| |
| def forward(self, input): |
| output = self.weight.mv(input) |
| |
| # This calls the `forward` method of the `nn.Linear` module, which will |
| # cause the `self.linear` submodule to be compiled to a `ScriptModule` here |
| output = self.linear(output) |
| return output |
| |
| scripted_module = torch.jit.script(MyModule(2, 3)) |
| |
| Example (scripting a module with traced submodules): |
| |
| .. testcode:: |
| |
| import torch |
| import torch.nn as nn |
| import torch.nn.functional as F |
| |
| class MyModule(nn.Module): |
| def __init__(self): |
| super(MyModule, self).__init__() |
| # torch.jit.trace produces a ScriptModule's conv1 and conv2 |
| self.conv1 = torch.jit.trace(nn.Conv2d(1, 20, 5), torch.rand(1, 1, 16, 16)) |
| self.conv2 = torch.jit.trace(nn.Conv2d(20, 20, 5), torch.rand(1, 20, 16, 16)) |
| |
| def forward(self, input): |
| input = F.relu(self.conv1(input)) |
| input = F.relu(self.conv2(input)) |
| return input |
| |
| scripted_module = torch.jit.script(MyModule()) |
| |
| To compile a method other than ``forward`` (and recursively compile anything it calls), add |
| the :func:`@torch.jit.export <torch.jit.export>` decorator to the method. To opt out of compilation |
| use :func:`@torch.jit.ignore <torch.jit.ignore>` or :func:`@torch.jit.unused <torch.jit.unused>`. |
| |
| Example (an exported and ignored method in a module):: |
| |
| import torch |
| import torch.nn as nn |
| |
| class MyModule(nn.Module): |
| def __init__(self): |
| super(MyModule, self).__init__() |
| |
| @torch.jit.export |
| def some_entry_point(self, input): |
| return input + 10 |
| |
| @torch.jit.ignore |
| def python_only_fn(self, input): |
| # This function won't be compiled, so any |
| # Python APIs can be used |
| import pdb |
| pdb.set_trace() |
| |
| def forward(self, input): |
| if self.training: |
| self.python_only_fn(input) |
| return input * 99 |
| |
| scripted_module = torch.jit.script(MyModule()) |
| print(scripted_module.some_entry_point(torch.randn(2, 2))) |
| print(scripted_module(torch.randn(2, 2))) |
| """ |
| if not _enabled: |
| return obj |
| |
| if optimize is not None: |
| warnings.warn( |
| "`optimize` is deprecated and has no effect. Use `with torch.jit.optimized_execution() instead" |
| ) |
| if isinstance(obj, ScriptModule): |
| return obj |
| |
| if isinstance(obj, torch.nn.Module): |
| return torch.jit._recursive.create_script_module( |
| obj, torch.jit._recursive.infer_methods_to_compile |
| ) |
| |
| qualified_name = _qualified_name(obj) |
| if inspect.isclass(obj): |
| # If this type is a `nn.Module` subclass, they probably meant to pass |
| # an instance instead of a Module |
| if issubclass(obj, torch.nn.Module): |
| raise RuntimeError( |
| "Type '{}' cannot be compiled since it inherits" |
| " from nn.Module," |
| " pass an instance instead".format(obj) |
| ) |
| |
| if not _is_new_style_class(obj): |
| raise RuntimeError( |
| "TorchScript classes must be new-style classes. " |
| "Please inherit from 'object'." |
| ) |
| if len(obj.mro()) > 2: |
| raise RuntimeError( |
| "TorchScript classes does not support inheritance yet. " |
| "Please directly inherit from 'object'." |
| ) |
| if _rcb is None: |
| _rcb = _jit_internal.createResolutionCallbackFromFrame(_frames_up + 1) |
| _compile_and_register_class(obj, _rcb, qualified_name) |
| return obj |
| else: |
| # this is a decorated fn, and we need to the underlying fn and its rcb |
| if hasattr(obj, "__script_if_tracing_wrapper"): |
| obj = obj.__original_fn |
| _rcb = _jit_internal.createResolutionCallbackFromClosure(obj) |
| |
| _check_directly_compile_overloaded(obj) |
| maybe_already_compiled_fn = _try_get_jit_cached_function(obj) |
| if maybe_already_compiled_fn: |
| return maybe_already_compiled_fn |
| ast = get_jit_def(obj, obj.__name__) |
| if _rcb is None: |
| _rcb = _jit_internal.createResolutionCallbackFromClosure(obj) |
| fn = torch._C._jit_script_compile( |
| qualified_name, ast, _rcb, get_default_args(obj) |
| ) |
| # Forward docstrings |
| fn.__doc__ = obj.__doc__ |
| _set_jit_function_cache(obj, fn) |
| return fn |
| |
| |
| # overloads are registered in _jit_internal and compiled here so that _overload |
| # can be used in nn/functional.py without an import cycle |
| |
| |
| def _check_overload_defaults(impl_defaults, overload_defaults, loc): |
| for name, overload_value in overload_defaults.items(): |
| if name not in impl_defaults or impl_defaults[name] != overload_value: |
| raise torch.jit.frontend.FrontendError( |
| loc, |
| "Default parameters on overloads do not affect the runtime so they " |
| "must equal to the default parameter on the implementation function. Found on " |
| "parameter {name}".format(name=name), |
| ) |
| |
| |
| def _compile_function_with_overload(overload_fn, qual_name, impl_fn): |
| overload_decl = get_jit_def(overload_fn, overload_fn.__name__).decl() |
| overload_signature = torch.jit.annotations.get_signature( |
| overload_fn, None, None, inspect.ismethod(overload_fn) |
| ) |
| impl_ast = get_jit_def(impl_fn, impl_fn.__name__) |
| overload_defaults = get_default_args(overload_fn) |
| implementation_defaults = get_default_args(impl_fn) |
| _rcb = _jit_internal.createResolutionCallbackFromClosure(impl_fn) |
| _check_overload_defaults( |
| implementation_defaults, overload_defaults, overload_decl.range() |
| ) |
| fn = torch._C._jit_script_compile_overload( |
| qual_name, |
| overload_decl, |
| impl_ast, |
| _rcb, |
| implementation_defaults, |
| overload_signature, |
| ) |
| return fn |
| |
| |
| def _get_overloads(obj): |
| # check for cached compiled fns |
| existing_compiled_fns = _try_get_jit_cached_overloads(obj) |
| qual_name = _qualified_name(obj) |
| uncompiled_overloads = _jit_internal._get_fn_overloads(qual_name) |
| if uncompiled_overloads is None: |
| return existing_compiled_fns |
| |
| compiled_fns = [] |
| for overload_fn in uncompiled_overloads: |
| compiled_fns.append( |
| _compile_function_with_overload(overload_fn, qual_name, obj) |
| ) |
| |
| if existing_compiled_fns: |
| compiled_fns = existing_compiled_fns + compiled_fns |
| |
| # cache compilation, remove information stored to do compilation |
| _set_jit_overload_cache(obj, compiled_fns) |
| _jit_internal._clear_fn_overloads(qual_name) |
| return compiled_fns |
| |
| |
| def _check_directly_compile_overloaded(obj): |
| qual_name = _qualified_name(obj) |
| if _jit_internal._get_fn_overloads(qual_name) or _try_get_jit_cached_overloads(obj): |
| raise RuntimeError( |
| "Function {} cannot be directly compiled because it" |
| " is overloaded. It must be used in a context of a function" |
| " where its inputs can determine which overload to call.".format(qual_name) |
| ) |
| |
| |
| def interface(obj): |
| if not inspect.isclass(obj): |
| raise RuntimeError("interface must be applied to a class") |
| if not _is_new_style_class(obj): |
| raise RuntimeError("TorchScript interfaces must inherit from 'object'") |
| |
| # Expected MRO is: |
| # User module |
| # torch.nn.modules.module.Module |
| # object |
| is_module_interface = issubclass(obj, torch.nn.Module) and len(obj.mro()) == 3 |
| |
| if not is_module_interface and len(obj.mro()) > 2: |
| raise RuntimeError( |
| "TorchScript interface does not support inheritance yet. " |
| "Please directly inherit from 'object' or 'nn.Module'." |
| ) |
| |
| qualified_name = _qualified_name(obj) |
| rcb = _jit_internal.createResolutionCallbackFromFrame(1) |
| # if this type is a `nn.Module` subclass, generate an module interface type |
| # instead of a class interface type, an module interface type only compile |
| # the user provided methods as part of the interface |
| ast = get_jit_class_def(obj, obj.__name__) |
| torch._C._jit_script_interface_compile( |
| qualified_name, ast, rcb, is_module_interface |
| ) |
| obj.__torch_script_interface__ = True |
| return obj |
| |
| |
| def _recursive_compile_class(obj, loc): |
| _qual_name = _qualified_name(obj) |
| # We're starting a new compilation, so update the error call stack in |
| # case it fails |
| error_stack = torch._C.CallStack(_qual_name, loc) |
| rcb = _jit_internal.createResolutionCallbackForClassMethods(obj) |
| _compile_and_register_class(obj, rcb, _qual_name) |
| |
| |
| class CompilationUnit(object): |
| def __init__(self, lang=None, _frames_up=0): |
| self._c = torch._C.CompilationUnit() |
| if lang is not None: |
| self.define(lang, _frames_up=_frames_up + 1) |
| |
| def define(self, lang, rcb=None, _frames_up=0): |
| if not rcb: |
| rcb = _jit_internal.createResolutionCallbackFromFrame(_frames_up + 1) |
| self._c.define(lang, rcb) |
| |
| def __getattr__(self, attr): |
| r = self._c.find_function(attr) |
| if r is None: |
| raise AttributeError("'CompilationUnit' has no attribute '{}'".format(attr)) |
| return r |
| |
| |
| def _unwrap_optional(x): |
| assert x is not None, "Unwrapping null optional" |
| return x |
| |
| |
| _register_builtin(_unwrap_optional, "aten::_unwrap_optional") |
| _register_builtin(_jit_internal.is_scripting, "aten::is_scripting") |