blob: 5301b61988440b336c95b5d175f1ef661fee56b9 [file] [log] [blame]
#include "torch/csrc/jit/assertions.h"
#include "torch/csrc/jit/script/module.h"
#include "torch/csrc/jit/script/compiler.h"
#include "torch/csrc/jit/script/error_report.h"
#include "torch/csrc/jit/export.h"
#include "torch/csrc/jit/operator.h"
namespace torch { namespace jit { namespace script {
struct RecursiveMethodCallError : public std::exception {};
void placeholderCreator(Method&) {
throw RecursiveMethodCallError();
}
c10::optional<std::vector<Value*>> try_emit_call_to(
Graph& graph,
SourceRange loc,
Method& callee,
c10::optional<NamedValue> self,
ArrayRef<NamedValue> args,
ArrayRef<NamedValue> kwargs,
std::stringstream& failure_messages,
Method* caller,
bool conv_tensors_to_nums) {
try {
callee.ensure_defined();
} catch (RecursiveMethodCallError&) {
throw ErrorReport(loc) << " method '" << callee.name()
<< "' is called recursively involving this call site. Recursive calls are not supported";
}
auto fn = callee.graph();
auto matched_schema = tryMatchSchema(
callee.getSchema(),
loc, graph, self, args, kwargs, failure_messages, conv_tensors_to_nums);
if(!matched_schema)
return c10::nullopt;
// parameters to callee method (which become parameters to _this_ method
// if they were not already)
for(at::Tensor* member : callee.params()) {
if(!caller) {
throw ErrorReport(loc) << " attempting to call a method with parameters from a raw graph. File a bug report";
}
matched_schema->inputs.push_back(caller->get_or_add_parameter(member));
}
return inlineCallTo(graph, *callee.graph(), matched_schema->inputs);
}
std::vector<Value*> Method::emit_call_to(SourceRange loc, Method & callee, ArrayRef<NamedValue> args, ArrayRef<NamedValue> kwargs) {
JIT_ASSERT(!executor);
std::stringstream failure_messages;
if (auto result = try_emit_call_to(
*graph(),
loc,
callee,
c10::nullopt,
args,
kwargs,
failure_messages,
this,
/*conv_tensors_to_nums=*/true)) {
return *result;
}
throw ErrorReport(loc) << failure_messages.str();
}
void Method::ensure_defined() {
if(method_creator) {
auto creator = method_creator;
method_creator = placeholderCreator;
creator(*this);
method_creator = nullptr;
}
}
void Module::to(at::Device device, at::ScalarType dtype, bool non_blocking) {
to_impl(device, dtype, non_blocking);
}
void Module::to(at::ScalarType dtype, bool non_blocking) {
to_impl(/*device=*/c10::nullopt, dtype, non_blocking);
}
void Module::to(at::Device device, bool non_blocking) {
to_impl(device, /*dtype=*/c10::nullopt, non_blocking);
}
void Module::save(std::ostream& out) {
ExportModule(*this, out);
}
void Module::save(const std::string& filename) {
ExportModule(*this, filename);
}
void Module::to_impl(
c10::optional<at::Device> device,
c10::optional<at::ScalarType> dtype,
bool non_blocking) {
// First call `to()` on every child module.
for (auto& child : modules) {
child->module->to_impl(device, dtype, non_blocking);
}
// Then convert every of our parameters.
for (auto& parameter : parameters) {
// Need to access the `at::Tensor` as a `Variable` here.
autograd::Variable variable = *parameter->slot();
at::Tensor data = variable.data();
// Use the data's original device or dtype if not supplied here.
auto new_data = data.to(
device.value_or(data.device()),
dtype.value_or(data.scalar_type()),
non_blocking);
variable.set_data(new_data);
}
}
}}}