blob: c7fcccd92f02bcc74b0b823fc00223d4d0850a25 [file] [log] [blame]
#include "torch/csrc/jit/passes/peephole.h"
#include "torch/csrc/jit/symbolic_variable.h"
#include "torch/csrc/jit/passes/dead_code_elimination.h"
namespace torch { namespace jit {
// The intent for this optimization pass is to catch all of the small, easy to
// catch peephole optimizations you might be interested in doing.
//
// Right now, it does:
// - Eliminate no-op 'expand' nodes
// - Simply x.t().t() to x
//
// TODO: Decide what kind of fixed point strategy we will have
//
// The parameter `addmm_fusion_enabled` exists because, as it is today, fusing
// add + mm has no benefit within PyTorch running ATen ops. However, we rely on
// seeing the fused version of addmm for ONNX export, since after ONNX translation
// we would see redundant Gemm ops with sub-optimal inputs. This flag is exposed
// so that ONNX export can pass `true` to get the fused behavior, but normal
// JIT peephole optimization is left alone.
void PeepholeOptimizeImpl(Block * block, bool addmm_fusion_enabled) {
for (auto it = block->nodes().begin(); it != block->nodes().end(); ++it) {
auto* node = *it;
for (Block * sub_block : node->blocks()) {
PeepholeOptimizeImpl(sub_block, addmm_fusion_enabled);
}
// XXX: remember that if you want to simplify an expression by combining multiple nodes
// into a different one, then you need to check that they all belong to the given block
if (node->matches("aten::expand(Tensor self, int[] size, *, bool implicit) -> Tensor",
/*const_inputs=*/attr::size)) {
// x.expand(x.size()) == x
if (auto input_type = node->namedInput(attr::self)->type()->cast<CompleteTensorType>()) {
auto expanded_sizes = node->get<std::vector<int64_t>>(attr::size);
if (expanded_sizes == input_type->sizes()) {
node->output()->replaceAllUsesWith(node->namedInput(attr::self));
}
}
} else if (node->matches("aten::t(Tensor self) -> Tensor")) {
// x.t().t() == x
Node *input_node = node->input()->node();
if (input_node->matches("aten::t(Tensor self) -> Tensor")) {
node->output()->replaceAllUsesWith(input_node->input());
}
} else if (node->matches("aten::type_as(Tensor self, Tensor other) -> Tensor")) {
// x.type_as(y) == x iff x.type() == y.type()
auto self_type = node->input(0)->type()->cast<TensorType>();
auto other_type = node->input(1)->type()->cast<TensorType>();
if (self_type && other_type &&
self_type->scalarType() == other_type->scalarType() &&
self_type->device() == other_type->device()) {
node->output()->replaceAllUsesWith(node->input(0));
}
} else if (node->matches("aten::add(Tensor self, Tensor other, *, Scalar alpha) -> Tensor",
/*const_inputs=*/attr::alpha)) {
// z + x.mm(y) == z.addmm(x, y) == x.mm(y) + z
// This optimization has been disabled at the moment, because it's not helpful at all
// until we will be able to represent torch.addmm(a, b, c, out=a). That's because addmm
// dispatches internally to gemm, which computes:
// C = beta * C + alpha * A @ B
// but aten::addmm(a, b, c, 1, 1) is really:
// D = beta * C + alpha * A @ B
// and because it works out of place on C, we're only trading off an explicit add for
// a copy inside the addmm function. Note that it doesn't even result in fewer reads,
// because mm won't even load C (because beta == 0 for it).
if (addmm_fusion_enabled && node->get<at::Scalar>(attr::alpha).value().toDouble() == 1.) {
// Look for mm from both sides of the add
for (size_t mm_side = 0; mm_side < 2; mm_side++) {
// Add will accept tensors of mismatched scalar types, as long as one of them is a scalar.
// Addmm will throw in that case, so we can only perform this fusion if we're sure
// that it is correct, and for that we need the add_mat_type.
// An alternative would be to insert a type_as conditional on the tensor shape being a
// scalar, but that might add overhead, and make analysis harder.
auto add_mat_type = node->input(1 - mm_side)->type()->cast<TensorType>();
if (!add_mat_type) continue;
if (node->input(mm_side)->node()->matches("aten::mm(Tensor self, Tensor mat2) -> Tensor")) {
WithInsertPoint guard(node);
auto mm_node = node->input(mm_side)->node();
SymbolicVariable add_mat(node->input(1 - mm_side));
SymbolicVariable mat1(mm_node->input(0));
SymbolicVariable mat2(mm_node->input(1));
auto mat_type = mat1.value()->type()->cast<TensorType>();
if (!mat_type) {
mat_type = mat2.value()->type()->cast<TensorType>();
}
// We insert the type_as if we're sure that the added element is a scalar, and we
// either don't know what is the type of the multiplied matrices, or know the type,
// and know that it's mismatched.
if (add_mat_type->dim() == 0 && (!mat_type || add_mat_type->scalarType() != mat_type->scalarType())) {
add_mat = add_mat.type_as(mat1);
}
SymbolicVariable addmm_value = add_mat.addmm(mat1, mat2);
// Copy shape information from output node
((Value*)addmm_value)->copyMetadata(node->output());
node->output()->replaceAllUsesWith(addmm_value);
}
}
}
// TODO: this doesn't work with Scalar-Tensor ops! We should canonicalize those
} else if (node->matches("aten::mul(Tensor self, Scalar other) -> Tensor", /*const_inputs=*/attr::other) ||
node->matches("aten::div(Tensor self, Scalar other) -> Tensor", /*const_inputs=*/attr::other)) {
// x * 1 == x / 1 == x
if (node->get<at::Scalar>(attr::other)->toDouble() == 1) {
node->output()->replaceAllUsesWith(node->input(0));
}
} else if (node->matches("aten::add(Tensor self, Scalar other, Scalar alpha) -> Tensor", /*const_inputs=*/{attr::alpha, attr::other}) ||
node->matches("aten::sub(Tensor self, Scalar other, Scalar alpha) -> Tensor", /*const_inputs=*/{attr::alpha, attr::other})) {
// x + 0 == x - 0 == x
if (node->get<at::Scalar>(attr::alpha)->toDouble() == 1 &&
node->get<at::Scalar>(attr::other)->toDouble() == 0) {
node->output()->replaceAllUsesWith(node->input(0));
}
} else if(node->kind() == prim::TensorToNum || node->kind() == prim::ImplicitTensorToNum) {
Node* input_node = node->input()->node();
if (input_node->kind() == prim::NumToTensor) {
node->output()->replaceAllUsesWith(input_node->input());
}
}
}
}
void PeepholeOptimize(Block* block, bool addmm_fusion_enabled) {
PeepholeOptimizeImpl(block, addmm_fusion_enabled);
// Eliminate dead code created by any peephole passes we've just done
EliminateDeadCode(block);
}
void PeepholeOptimize(const std::shared_ptr<Graph>& graph, bool addmm_fusion_enabled) {
PeepholeOptimize(graph->block(), addmm_fusion_enabled);
}
}}