blob: 4fbcb1ee6c88056a45e205f6830b50059ddf20d8 [file] [log] [blame]
#pragma once
#include "torch/csrc/jit/ir.h"
#include "torch/csrc/jit/graph_executor.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/jit/passes/shape_analysis.h"
#include "torch/csrc/jit/argument_spec.h"
#include "torch/csrc/jit/function_schema.h"
#include "torch/csrc/jit/assertions.h"
#include "torch/csrc/jit/named_value.h"
#include "torch/csrc/jit/source_range.h"
#include <torch/csrc/api/include/torch/detail/ordered_dict.h>
#include <ATen/core/ArrayRef.h>
#include <ATen/core/optional.h>
#include <functional>
#include <memory>
#include <mutex>
#include <string>
#include <unordered_map>
#include <vector>
// This file contains classes which assist in desugaring Python style
// modules and their methods into flattened graphs which don't have any
// function calls.
namespace torch { namespace jit { namespace script {
// A method in a module, e.g. f in:
//
// class M(ScriptModule):
// @script_method
// def f(self, x):
// ...
// Note: because Method/Module are exposed to python these
// classes use python method naming conventions
struct Method {
Method(std::string name, bool optimize,
std::shared_ptr<Graph> graph,
std::vector<at::Tensor*> initial_members,
std::function<void(Method&)> method_creator)
: name_(std::move(name))
, graph_(std::move(graph))
, optimize(optimize)
, member_inputs(std::move(initial_members))
, method_creator(method_creator) {
JIT_ASSERT(graph_->inputs().size() >= member_inputs.size());
int i = graph_->inputs().size() - member_inputs.size();
for(at::Tensor* member : member_inputs) {
member_input_index[member] = i++;
}
}
void run(Stack & stack) {
for(at::Tensor* tp : member_inputs) {
stack.push_back(*tp);
}
get_executor().run(stack);
}
IValue operator()(std::vector<IValue> stack) {
run(stack);
if (stack.size() != 1) {
return Tuple::create(std::move(stack));
}
return stack.front();
}
std::shared_ptr<Graph> graph_for(const Stack& inputs) {
return get_executor().graphFor(inputs);
}
std::shared_ptr<Graph> graph() const {
return graph_;
}
const std::string & name() const {
return name_;
}
// emit a function call by inlining the callees Graph into this one
// adding any extra parameters necessary to do this call
// defined here to keep details of member_input handling confined to this class
std::vector<Value*> emit_call_to(SourceRange loc, Method & callee, ArrayRef<NamedValue> args, ArrayRef<NamedValue> kwargs);
// if this isn't yet defined, run its method_creator function
void ensure_defined();
size_t num_inputs() const {
return graph()->inputs().size() - member_inputs.size();
}
Value * get_or_add_parameter(at::Tensor* slot) {
auto it = member_input_index.find(slot);
if(it != member_input_index.end()) {
return graph()->inputs().at(it->second);
}
// add it as a new parameter
member_inputs.push_back(slot);
member_input_index[slot] = graph()->inputs().size();
return graph()->addInput();
}
std::shared_ptr<Graph> propagate_shapes(std::vector<at::Tensor> inputs, bool with_grad=false) {
auto retval = graph_->copy();
Stack stack;
stack.reserve(inputs.size() + member_inputs.size());
for (at::Tensor & i : inputs) {
stack.emplace_back(std::move(i));
}
for (at::Tensor* inp : member_inputs) {
stack.push_back(*inp);
}
PropagateInputShapes(*retval, ArgumentSpec(with_grad, std::move(stack)));
return retval;
}
std::shared_ptr<Graph> propagate_and_assign_input_and_output_shapes(std::vector<at::Tensor> inputs, std::vector<at::Tensor> outputs, bool with_grad=false, bool propagate=true) {
auto retval = graph_->copy();
for (auto inp : member_inputs) {
inputs.push_back(*inp);
}
if (propagate) {
PropagateInputShapes(*retval, ArgumentSpec(with_grad, fmap<IValue>(inputs)));
}
JIT_ASSERT(retval->inputs().size() == inputs.size());
for (size_t i=0; i < retval->inputs().size(); ++i) {
auto scalar_type = inputs[i].type().scalarType();
auto sizes = inputs[i].sizes();
auto type = torch::jit::CompleteTensorType::create(scalar_type, -1, sizes);
retval->inputs()[i]->setType(type);
}
JIT_ASSERT(retval->outputs().size() == outputs.size());
for (size_t i=0; i < retval->outputs().size(); ++i) {
auto scalar_type = outputs[i].type().scalarType();
auto sizes = outputs[i].sizes();
auto type = torch::jit::CompleteTensorType::create(scalar_type, -1, sizes);
retval->outputs()[i]->setType(type);
}
return retval;
}
std::vector<at::Tensor*> params() {
return member_inputs;
}
Method& setSchema(FunctionSchema schema_) {
schema.reset(new FunctionSchema(std::move(schema_)));
return *this;
}
const FunctionSchema& getSchema() const {
AT_ASSERT(schema != nullptr);
return *schema;
}
std::string prettyPrintSchema() const {
JIT_ASSERT(schema);
std::stringstream ss;
ss << *schema;
return ss.str();
}
GraphExecutorState getDebugState() {
return get_executor().getDebugState();
}
private:
std::string name_;
std::shared_ptr<Graph> graph_; // for debugging and for inlining
bool optimize;
GraphExecutor& get_executor() {
std::call_once(executor_init, [&]{
executor = GraphExecutor(graph(), optimize);
});
return executor;
}
GraphExecutor executor; // for execution
// member_inputs are a list of additional arguments appended to graph that are
// inputs that come from the members of the Module or its submodules.
// each is a pointer to a slot in the module that owns this parameter
// parameters and submodules can only be _added_ to script Modules to ensure
// these pointers always stay valid
std::vector<at::Tensor*> member_inputs;
// map from a at::Tensor* in member_inputs to the offset it appears at
// in graph. used to accelerate get_or_add_parameter
std::unordered_map<at::Tensor*, size_t> member_input_index;
// TODO: support that case where we allow _writes_ to parameters from
// compiled functions.
// This requires more sophisticated tracking of ssa values in Graphs so that
// stores to all modules can be lifted to the end of a graph execution.
// It also adds more complexity to adding actual module invocations
// to the executor, so currently it is not done.
// std::vector<at::Tensor*> member_outputs;
std::once_flag executor_init;
// an optional function that actually creates the method when emit_call_to(this,...)
// is first called.
// this is used by the compiler so that it can construct methods out of order
std::function<void(Method&)> method_creator;
// if absent, then we generate a default schema based on the graph
std::unique_ptr<FunctionSchema> schema;
};
struct Module;
struct NamedModule {
std::string name;
std::shared_ptr<Module> module;
};
struct NamedParameter {
NamedParameter(std::string name, at::Tensor tensor, bool is_buffer)
: name(std::move(name))
, is_buffer(is_buffer)
, parameter(new at::Tensor(std::move(tensor))) {}
const std::string name;
bool is_buffer; // buffers are part of the module state but
// are not modified by optimizers during SGD
at::Tensor* slot() const {
return parameter.get();
}
private:
// the extra level of indirection allows Methods to safely store pointers
// to the slots where parameters are kept while also allow parameters
// to be reassigned
std::unique_ptr<at::Tensor> parameter;
};
struct Module {
TH_DISALLOW_COPY_AND_ASSIGN(Module);
Module()
: modules("Module")
, parameters("Parameter")
, methods("Method")
, optimize(true) {}
// note this doesn't change the flags of existing methods just ones
// added afterward.
void set_optimized(bool o) {
optimize = o;
}
IValue forward(std::vector<IValue> inputs) {
return get_method("forward")(inputs);
}
void register_parameter(const std::string & name, autograd::Variable v, bool is_buffer) {
if(auto p = parameters.find(name)){
*p->slot() = v;
p->is_buffer = is_buffer;
return;
}
parameters.insert(name, NamedParameter(name, std::move(v), is_buffer));
}
void register_module(const std::string& name, std::shared_ptr<Module> module) {
modules.insert(name, {name, std::move(module)});
}
Method& create_method(const std::string & name, std::shared_ptr<Graph> graph, std::vector<at::Tensor*> member_inputs) {
JIT_ASSERT(graph);
std::unique_ptr<Method> method(new Method(name, optimize, std::move(graph), std::move(member_inputs), nullptr));
return *methods.insert(name, std::move(method));
}
Method& create_method(const std::string & name, std::function<void(Method&)> creator) {
std::unique_ptr<Method> method(new Method(name, optimize, std::make_shared<Graph>(), {}, creator));
return *methods.insert(name, std::move(method));
}
at::Tensor* parameter_slot(const std::string & name) const {
return parameters.get(name).slot();
}
void set_parameter(const std::string & name, at::Tensor v) {
*parameter_slot(name) = std::move(v);
}
autograd::Variable get_parameter(const std::string& name) const {
return autograd::as_variable_ref(*parameter_slot(name));
}
// each module owns its method. The reference returned here
// is guarenteed to stay valid until this module has been destroyed
Method& get_method(const std::string& name) const {
return *methods.get(name);
}
std::shared_ptr<Module> get_module(const std::string& name) const {
return modules.get(name).module;
}
const torch::detail::OrderedDict<std::string, NamedModule>& get_modules() const {
return modules;
}
const torch::detail::OrderedDict<std::string, NamedParameter>& get_parameters() const {
return parameters;
}
const torch::detail::OrderedDict<std::string, std::unique_ptr<Method>>& get_methods() const {
return methods;
}
NamedParameter* find_parameter(const std::string& name) {
return parameters.find(name);
}
NamedModule* find_module(const std::string& name) {
return modules.find(name);
}
Method* find_method(const std::string& name) {
if (auto* pm = methods.find(name)) {
return pm->get();
}
return nullptr;
}
void save(const std::string& filename);
private:
// invariant: to ensure member_inputs of Methods stay valid,
// it is only legal to _add_ new modules and parameters.
// removing them will allow member_inputs to point to invalid parameters
// no such restriction exists for methods
torch::detail::OrderedDict<std::string, NamedModule> modules;
torch::detail::OrderedDict<std::string, NamedParameter> parameters;
torch::detail::OrderedDict<std::string, std::unique_ptr<Method>> methods;
bool optimize;
};
}}}