blob: fc44d010447d2ade8c49ed315b748b2d5ce141e7 [file] [log] [blame]
#include "torch/csrc/jit/import.h"
#include "torch/csrc/jit/serialization.h"
#include "onnx/onnx.pb.h"
#include "torch/csrc/jit/ir.h"
#include "torch/csrc/utils/functional.h"
#include "torch/csrc/jit/assertions.h"
#include <ATen/ATen.h>
#include <unordered_map>
#include <vector>
#include <string>
namespace torch { namespace jit {
namespace {
namespace onnx = ::ONNX_NAMESPACE;
// IR graph construction
class DecoderBase {
protected:
virtual std::shared_ptr<Graph> buildGraph(const onnx::GraphProto& graph_proto);
void buildBlock(const onnx::GraphProto& graph_proto, Block* block,
std::unordered_map<std::string, Value*>& value_map);
void buildBlocks(const std::vector<onnx::GraphProto>& graphs_, Node* node,
std::unordered_map<std::string, Value*>& value_map);
virtual void buildValue(Value* value, const onnx::ValueInfoProto& valueinfo_proto) {};
virtual void buildIntermediateValue(Value* value, const std::string& name) {};
at::ScalarType onnxTypeToATenType(onnx::TensorProto_DataType tensor_proto);
virtual at::Tensor buildTensor(const onnx::TensorProto& tensor_proto);
};
at::ScalarType DecoderBase::onnxTypeToATenType(onnx::TensorProto_DataType onnx_type) {
switch(onnx_type) {
case onnx::TensorProto_DataType_UINT8:
return at::kByte;
case onnx::TensorProto_DataType_INT8:
return at::kChar;
case onnx::TensorProto_DataType_INT16:
return at::kShort;
case onnx::TensorProto_DataType_INT32:
return at::kInt;
case onnx::TensorProto_DataType_INT64:
return at::kLong;
case onnx::TensorProto_DataType_FLOAT16:
return at::kHalf;
case onnx::TensorProto_DataType_FLOAT:
return at::kFloat;
case onnx::TensorProto_DataType_DOUBLE:
return at::kDouble;
default:
throw std::runtime_error("Unsupported data type");
}
}
at::Tensor DecoderBase::buildTensor(const onnx::TensorProto& tensor_proto) {
at::Tensor tensor = at::CPU(onnxTypeToATenType(tensor_proto.data_type())).tensor();
std::vector<int64_t> sizes = { tensor_proto.dims().begin(), tensor_proto.dims().end() };
tensor.resize_(sizes);
JIT_ASSERT(
tensor.storage().size() *
tensor.storage().elementSize() ==
tensor_proto.raw_data().size());
std::memcpy(tensor.data_ptr(), tensor_proto.raw_data().data(), tensor_proto.raw_data().size());
return tensor;
}
void DecoderBase::buildBlocks(
const std::vector<onnx::GraphProto>& graphs_, Node* node,
std::unordered_map<std::string, Value*>& value_map) {
for (auto g_ : graphs_) {
auto block = node->addBlock();
buildBlock(g_, block, value_map);
}
}
std::shared_ptr<Graph> DecoderBase::buildGraph(const onnx::GraphProto& graph_proto) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> value_map;
buildBlock(graph_proto, graph->block(), value_map);
return graph;
}
void DecoderBase::buildBlock(const onnx::GraphProto& graph_proto, Block* block,
std::unordered_map<std::string, Value*>& value_map) {
for (auto & input : graph_proto.input()) {
auto value = block->addInput();
value_map[input.name()] = value;
buildValue(value, input);
}
for (auto & node_ : graph_proto.node()) {
JIT_ASSERT(node_.op_type() != "PythonOp");
auto node = block->owningGraph()->create(Symbol::fromDomainAndUnqualString(node_.domain(), node_.op_type()),
node_.output().size());
for (auto & attr : node_.attribute()) {
Symbol name = Symbol::attr(attr.name());
switch(attr.type()) {
case onnx::AttributeProto_AttributeType_UNDEFINED:
throw std::runtime_error("UNDEFINED attribute unsupported");
break;
case onnx::AttributeProto_AttributeType_FLOAT:
node->f_(name, attr.f());
break;
case onnx::AttributeProto_AttributeType_INT:
node->i_(name, attr.i());
break;
case onnx::AttributeProto_AttributeType_STRING:
node->s_(name, std::move(attr.s()));
break;
case onnx::AttributeProto_AttributeType_TENSOR:
node->t_(name, buildTensor(attr.t()));
break;
case onnx::AttributeProto_AttributeType_GRAPH:
node->g_(name, buildGraph(attr.g()));
break;
case onnx::AttributeProto_AttributeType_FLOATS:
node->fs_(name, {attr.floats().begin(), attr.floats().end()});
break;
case onnx::AttributeProto_AttributeType_INTS:
node->is_(name, {attr.ints().begin(), attr.ints().end()});
break;
case onnx::AttributeProto_AttributeType_STRINGS:
node->ss_(name, {attr.strings().begin(), attr.strings().end()});
break;
case onnx::AttributeProto_AttributeType_TENSORS:
node->ts_(name, fmap(attr.tensors(), [this](const onnx::TensorProto& t) {
return buildTensor(t);
}));
break;
case onnx::AttributeProto_AttributeType_GRAPHS:
if (attr.name() == "_blocks") {
buildBlocks({attr.graphs().begin(), attr.graphs().end()}, node, value_map);
}
else {
node->gs_(name, fmap(attr.graphs(), [this](const onnx::GraphProto& g_) {
return buildGraph(g_);
}));
}
break;
}
}
for (auto & input : node_.input()) {
auto v = value_map[input];
node->addInput(v);
}
for (int i=0; i<node_.output().size(); i++) {
value_map[node_.output(i)] = node->outputs()[i];
buildIntermediateValue(node->outputs()[i], node_.output(i));
}
block->appendNode(node);
}
for (auto & output : graph_proto.output()) {
Value* v = value_map.at(output.name());
buildValue(v, output);
block->registerOutput(v);
}
}
class ModuleDecoder : DecoderBase {
public:
ModuleDecoder(std::shared_ptr<script::Module> root_module,
const std::string& filename);
private:
virtual std::shared_ptr<Graph> buildGraph(const onnx::GraphProto& graph_proto) override;
virtual at::Tensor buildTensor(const onnx::TensorProto& tensor_proto) override;
TypePtr buildType(const onnx::TypeProto& type_proto);
virtual void buildValue(Value* value, const onnx::ValueInfoProto& valueinfo_proto) override;
virtual void buildIntermediateValue(Value* value, const std::string& name) override;
at::Tensor buildParameter(const onnx::TensorProto& tensor_proto);
at::Tensor buildTensorCommon(const onnx::TensorProto& tensor_proto,
const uint64_t record_number,
const int64_t storage_offset,
const std::vector<int64_t>& strides);
std::pair<std::shared_ptr<script::Module>, std::string> parseFullName(
std::shared_ptr<script::Module> root_module,
const std::string fullname);
PyTorchFileReader file_reader_;
std::unordered_map<uint64_t, std::shared_ptr<at::Tensor>> storage_map_;
std::unordered_map<std::string, const onnx::TypeProto*> value_type_map_;
};
std::shared_ptr<Graph> ModuleDecoder::buildGraph(const onnx::GraphProto& graph_proto) {
for (auto &subtype : graph_proto.value_info()) {
value_type_map_[subtype.name()] = &subtype.type();
}
return DecoderBase::buildGraph(graph_proto);
}
TypePtr ModuleDecoder::buildType(const onnx::TypeProto& type_proto) {
auto tensortype_proto = type_proto.tensor_type();
auto shape_proto = tensortype_proto.shape();
auto kind = type_proto.denotation();
if (kind == "DynamicType") {
return DynamicType::get();
} else if (kind == "TensorType") {
// TODO: Don't use DynamicType here
return DynamicType::get();
} else if (kind == "CompleteTensorType") {
// TODO: Don't use DynamicType here
return DynamicType::get();
} else if (kind == "TupleType") {
std::vector<TypePtr> elems;
for (auto &subkind : shape_proto.dim()) {
auto it = value_type_map_.find(subkind.dim_param());
JIT_ASSERT(it != value_type_map_.end());
elems.push_back(buildType(*it->second));
}
return TupleType::create(elems);
} else if (kind == "ListType") {
auto subkind = shape_proto.dim(0);
auto it = value_type_map_.find(subkind.dim_param());
JIT_ASSERT(it != value_type_map_.end());
return ListType::create(buildType(*it->second));
} else if (kind == "NumberType") {
return NumberType::get();
} else if (kind == "FloatType") {
return FloatType::get();
} else if (kind == "IntType") {
return IntType::get();
} else if (kind == "NoneType") {
return NoneType::get();
} else {
throw std::runtime_error("unexpected string for type kind");
}
}
void ModuleDecoder::buildValue(Value* value, const onnx::ValueInfoProto& valueinfo_proto) {
value->setType(buildType(valueinfo_proto.type()));
}
void ModuleDecoder::buildIntermediateValue(Value* value, const std::string& name) {
auto it = value_type_map_.find(name);
JIT_ASSERT(it != value_type_map_.end());
value->setType(buildType(*it->second));
}
at::Tensor ModuleDecoder::buildParameter(const onnx::TensorProto& tensor_proto) {
std::vector<int64_t> strides;
// We've stored four other values (is_buffer, requires_grad, record no., storage_offset) before strides; ignore them
std::move(tensor_proto.int64_data().begin() + 4, tensor_proto.int64_data().end(), std::back_inserter(strides));
auto tensor = buildTensorCommon(tensor_proto,
/* record_number = */ tensor_proto.int64_data(2),
/* storage_offset = */ tensor_proto.int64_data(3),
strides);
autograd::Variable var = autograd::make_variable(tensor, /* requires_grad = */ tensor_proto.int64_data(1));
return var;
}
at::Tensor ModuleDecoder::buildTensor(const onnx::TensorProto& tensor_proto) {
std::vector<int64_t> strides;
// We've stored two other values (record no., storage_offset) before strides; ignore it
std::move(tensor_proto.int64_data().begin() + 2, tensor_proto.int64_data().end(), std::back_inserter(strides));
return buildTensorCommon(tensor_proto,
/* record_number = */ tensor_proto.int64_data(0),
/* storage_offset = */ tensor_proto.int64_data(1),
strides);
}
at::Tensor ModuleDecoder::buildTensorCommon(
const onnx::TensorProto& tensor_proto,
const uint64_t record_number,
const int64_t storage_offset,
const std::vector<int64_t>& strides) {
// NB: storage_offset and strides are passed in separately because
// because they are encoded differently for parameters and tensors
auto type = onnxTypeToATenType(tensor_proto.data_type());
std::vector<int64_t> dims;
std::move(tensor_proto.dims().begin(), tensor_proto.dims().end(), std::back_inserter(dims));
// Find or create the storage
at::Tensor *storage_tensor;
auto storage_it = storage_map_.find(record_number);
if (storage_it == storage_map_.end()) {
auto storage = std::make_shared<at::Tensor>(at::CPU(type).tensor());
auto record = file_reader_.getRecordWithKey(record_number);
storage->resize_({ static_cast<int64_t>(std::get<1>(record)) });
std::memcpy(storage->storage().data(), std::get<0>(record).get(), std::get<1>(record));
storage_map_.insert(std::make_pair(record_number, storage));
storage_tensor = storage.get();
} else {
storage_tensor = storage_it->second.get();
}
return at::CPU(onnxTypeToATenType(tensor_proto.data_type())).tensor(
storage_tensor->storage(), storage_offset, dims, strides);
}
// Given a full name of a parameter or method,
// return the parent submodule and local name
std::pair<std::shared_ptr<script::Module>, std::string> ModuleDecoder::parseFullName(
std::shared_ptr<script::Module> root_module,
const std::string fullname) {
std::vector<std::string> vec;
std::stringstream ss(fullname);
std::string name;
while (std::getline(ss, name, '.')) {
vec.push_back(name);
}
std::shared_ptr<script::Module> curr = root_module;
for (size_t i = 0; i < vec.size() - 1; i++) {
if (curr->find_module(vec[i]) == nullptr) {
curr->register_module(vec[i], std::make_shared<script::Module>());
}
curr = curr->get_module(vec[i]);
}
return std::make_pair(curr, vec.back());
}
ModuleDecoder::ModuleDecoder(
const std::shared_ptr<script::Module> root_module,
const std::string &filename) :
file_reader_(filename) {
auto model_proto = onnx::ModelProto();
auto record = file_reader_.getLastRecord();
model_proto.ParsePartialFromArray(std::get<0>(record).get(), std::get<1>(record));
auto graph_proto = model_proto.graph();
std::unordered_map<std::string, at::Tensor*> param_map;
for (auto &tensor_proto : graph_proto.initializer()) {
std::shared_ptr<script::Module> parent_module;
std::string name;
std::tie(parent_module, name) = parseFullName(root_module, tensor_proto.name());
auto param = buildParameter(tensor_proto);
parent_module->register_parameter(name, param, /* is_buffer = */ tensor_proto.int64_data(0));
param_map[tensor_proto.name()] = parent_module->parameter_slot(name);
}
for (auto &node_proto : graph_proto.node()) {
std::shared_ptr<script::Module> parent_module;
std::string name;
std::tie(parent_module, name) = parseFullName(root_module, node_proto.name());
std::vector<at::Tensor*> member_inputs;
for (auto &param_name : node_proto.input()) {
member_inputs.push_back(param_map[param_name]);
}
auto graph = buildGraph(node_proto.attribute(0).g());
parent_module->create_method(name, graph, member_inputs);
}
}
} // namespace
void ImportIRModule(
const std::shared_ptr<script::Module> module,
const std::string& filename) {
ModuleDecoder(module, filename);
}
std::shared_ptr<script::Module> load(const std::string& filename) {
auto module = std::make_shared<script::Module>();
ModuleDecoder(module, filename);
return module;
}
}}