blob: f9f4711b27271ee87c2a3ec7b9c34533e12c6bae [file] [log] [blame]
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/native/Copy.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/Loops.h>
#include <ATen/core/DistributionsHelper.h>
namespace at {
namespace native {
namespace {
template<typename scalar_t>
void multinomial_apply(Tensor& result, const Tensor& self, const int64_t n_sample, const bool with_replacement, Generator* generator) {
auto gen = get_generator_or_default<CPUGenerator>(generator, detail::getDefaultCPUGenerator());
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
int64_t n_categories = self.size(-1);
int64_t n_dist = self.dim() > 1 ? self.size(-2) : 1;
/* cumulative probability distribution vector */
Tensor cum_dist = at::empty({n_categories}, self.options());
const scalar_t * const self_ptr = self.data_ptr<scalar_t>();
scalar_t * const cum_dist_ptr = cum_dist.data_ptr<scalar_t>();
int64_t * const result_ptr = result.data_ptr<int64_t>();
auto self_stride_0 = self.dim() > 1 ? self.stride(-2) : 0;
auto self_stride_1 = self.stride(-1);
auto cum_dist_stride_0 = cum_dist.stride(0);
auto result_dist_stride_0 = result.dim() > 1 ? result.stride(-2) : 0;
auto result_dist_stride_1 = result.stride(-1);
for (int64_t i = 0; i < n_dist; i++) {
/* Get normalized cumulative distribution from prob distribution */
scalar_t sum = 0;
scalar_t val;
int n_zeros = 0;
for (int64_t j = 0; j < n_categories; j++) {
val = self_ptr[i * self_stride_0 + j * self_stride_1];
TORCH_CHECK(val >= 0, "invalid multinomial distribution (encountering probability entry < 0)");
TORCH_CHECK(std::isfinite(val), "invalid multinomial distribution (encountering probability entry = infinity or NaN)");
sum += val;
if (val == 0) {
n_zeros += 1;
}
cum_dist_ptr[j * cum_dist_stride_0] = sum;
}
TORCH_CHECK(sum > 0, "invalid multinomial distribution (sum of probabilities <= 0)");
TORCH_CHECK(with_replacement || (n_categories - n_zeros >= n_sample),
"invalid multinomial distribution (with replacement=False, not enough non-negative category to sample)");
/* normalize cumulative probability distribution so that last val is 1
i.e. doesn't assume original self row sums to one */
if ((sum > 0) || ((sum < 1.00001) && (sum > 0.99999))) {
for (int64_t j = 0; j < n_categories; j++) {
cum_dist_ptr[j * cum_dist_stride_0] /= sum;
}
}
for (int64_t j = 0; j < n_sample; j++) {
/* sample a probability mass from a uniform distribution */
at::uniform_real_distribution<double> uniform(0, 1);
double uniform_sample = uniform(gen);
/* Do a binary search for the slot in which the prob falls
ie cum_dist[row][slot-1] < uniform_prob < cum_distr[row][slot] */
int left_pointer = 0;
int right_pointer = n_categories;
int mid_pointer;
scalar_t cum_prob;
int sample_idx;
/* Make sure the last cumulative distribution bucket sums to 1 */
cum_dist_ptr[(n_categories - 1) * cum_dist_stride_0] = 1;
while(right_pointer - left_pointer > 0) {
mid_pointer = left_pointer + (right_pointer - left_pointer) / 2;
cum_prob = cum_dist_ptr[mid_pointer * cum_dist_stride_0];
if (cum_prob < uniform_sample) {
left_pointer = mid_pointer + 1;
}
else {
right_pointer = mid_pointer;
}
}
sample_idx = left_pointer;
/* store in result tensor (will be incremented for lua compat by wrapper) */
result_ptr[i * result_dist_stride_0 + j * result_dist_stride_1] = sample_idx;
/* Once a sample is drawn, it cannot be drawn again. ie sample without replacement */
if (!with_replacement && j < n_sample - 1) {
/* update cumulative distribution so that sample cannot be drawn again */
scalar_t diff;
scalar_t new_val = 0;
scalar_t sum;
if (sample_idx != 0) {
new_val = cum_dist_ptr[(sample_idx - 1) * cum_dist_stride_0];
}
/* marginal cumulative mass (i.e. original probability) of sample */
diff = cum_dist_ptr[sample_idx * cum_dist_stride_0] - new_val;
/* new sum of marginals is not one anymore... */
sum = 1.0 - diff;
for (int64_t k = 0; k < n_categories; k++) {
new_val = cum_dist_ptr[k * cum_dist_stride_0];
if (k >= sample_idx) {
/* remove sampled probability mass from later cumulative probabilities */
new_val -= diff;
}
/* make total marginals sum to one */
new_val /= sum;
cum_dist_ptr[k * cum_dist_stride_0] = new_val;
}
}
}
}
}
static void multinomial_kernel_impl(Tensor& result, const Tensor& self, const int64_t n_sample, const bool with_replacement, Generator *gen) {
AT_DISPATCH_FLOATING_TYPES(self.scalar_type(), "multinomial", [&] {
multinomial_apply<scalar_t>(result, self, n_sample, with_replacement, gen);
});
}
}
REGISTER_DISPATCH(multinomial_stub, &multinomial_kernel_impl);
}
}