blob: cd5cb7305eba2718e0d0ef3e250dc2fb94b9f0f8 [file] [log] [blame]
//// --------------------------
//// ATTENTION:
//// THIS CODE IS AUTOGENERATED
//// BY hp_emblookup_codegen.py
//// DO NOT MODIFY!!!
//// --------------------------
#include <caffe2/core/common.h>
#include <caffe2/core/types.h>
#include <immintrin.h>
namespace caffe2 {
template <bool IS_WEIGHT_POSITIONAL>
static void EmbeddingLookup_int32_t_float_float__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const float* input,
const int32_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
const int32_t prefdist_T0 = 16;
const int32_t fused_block_size = block_size + 0;
CAFFE_ENFORCE(scale_bias == nullptr, "scale_bias must be nullptr");
if (block_size == 128) {
// unrolling 16 times
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
__m256 vop32 = _mm256_setzero_ps();
__m256 vop40 = _mm256_setzero_ps();
__m256 vop48 = _mm256_setzero_ps();
__m256 vop56 = _mm256_setzero_ps();
__m256 vop64 = _mm256_setzero_ps();
__m256 vop72 = _mm256_setzero_ps();
__m256 vop80 = _mm256_setzero_ps();
__m256 vop88 = _mm256_setzero_ps();
__m256 vop96 = _mm256_setzero_ps();
__m256 vop104 = _mm256_setzero_ps();
__m256 vop112 = _mm256_setzero_ps();
__m256 vop120 = _mm256_setzero_ps();
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const float* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const float* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (0)), vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (8)), vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (16)), vop16);
_mm_prefetch((&ip_next_T0[16]), _MM_HINT_T0);
vop24 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (24)), vop24);
// skip unnecessary prefetch of (&ip_next_T0[24])
vop32 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (32)), vop32);
_mm_prefetch((&ip_next_T0[32]), _MM_HINT_T0);
vop40 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (40)), vop40);
// skip unnecessary prefetch of (&ip_next_T0[40])
vop48 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (48)), vop48);
_mm_prefetch((&ip_next_T0[48]), _MM_HINT_T0);
vop56 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (56)), vop56);
// skip unnecessary prefetch of (&ip_next_T0[56])
vop64 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (64)), vop64);
_mm_prefetch((&ip_next_T0[64]), _MM_HINT_T0);
vop72 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (72)), vop72);
// skip unnecessary prefetch of (&ip_next_T0[72])
vop80 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (80)), vop80);
_mm_prefetch((&ip_next_T0[80]), _MM_HINT_T0);
vop88 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (88)), vop88);
// skip unnecessary prefetch of (&ip_next_T0[88])
vop96 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (96)), vop96);
_mm_prefetch((&ip_next_T0[96]), _MM_HINT_T0);
vop104 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (104)), vop104);
// skip unnecessary prefetch of (&ip_next_T0[104])
vop112 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (112)), vop112);
_mm_prefetch((&ip_next_T0[112]), _MM_HINT_T0);
vop120 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (120)), vop120);
// skip unnecessary prefetch of (&ip_next_T0[120])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
_mm256_storeu_ps(&op[32], vop32);
_mm256_storeu_ps(&op[40], vop40);
_mm256_storeu_ps(&op[48], vop48);
_mm256_storeu_ps(&op[56], vop56);
_mm256_storeu_ps(&op[64], vop64);
_mm256_storeu_ps(&op[72], vop72);
_mm256_storeu_ps(&op[80], vop80);
_mm256_storeu_ps(&op[88], vop88);
_mm256_storeu_ps(&op[96], vop96);
_mm256_storeu_ps(&op[104], vop104);
_mm256_storeu_ps(&op[112], vop112);
_mm256_storeu_ps(&op[120], vop120);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
_mm256_storeu_ps(&op[32], _mm256_mul_ps(vop32, vlen_inv));
_mm256_storeu_ps(&op[40], _mm256_mul_ps(vop40, vlen_inv));
_mm256_storeu_ps(&op[48], _mm256_mul_ps(vop48, vlen_inv));
_mm256_storeu_ps(&op[56], _mm256_mul_ps(vop56, vlen_inv));
_mm256_storeu_ps(&op[64], _mm256_mul_ps(vop64, vlen_inv));
_mm256_storeu_ps(&op[72], _mm256_mul_ps(vop72, vlen_inv));
_mm256_storeu_ps(&op[80], _mm256_mul_ps(vop80, vlen_inv));
_mm256_storeu_ps(&op[88], _mm256_mul_ps(vop88, vlen_inv));
_mm256_storeu_ps(&op[96], _mm256_mul_ps(vop96, vlen_inv));
_mm256_storeu_ps(&op[104], _mm256_mul_ps(vop104, vlen_inv));
_mm256_storeu_ps(&op[112], _mm256_mul_ps(vop112, vlen_inv));
_mm256_storeu_ps(&op[120], _mm256_mul_ps(vop120, vlen_inv));
}
}
} else if (block_size == 64) {
// unrolling 8 times
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
__m256 vop32 = _mm256_setzero_ps();
__m256 vop40 = _mm256_setzero_ps();
__m256 vop48 = _mm256_setzero_ps();
__m256 vop56 = _mm256_setzero_ps();
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const float* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const float* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (0)), vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (8)), vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (16)), vop16);
_mm_prefetch((&ip_next_T0[16]), _MM_HINT_T0);
vop24 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (24)), vop24);
// skip unnecessary prefetch of (&ip_next_T0[24])
vop32 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (32)), vop32);
_mm_prefetch((&ip_next_T0[32]), _MM_HINT_T0);
vop40 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (40)), vop40);
// skip unnecessary prefetch of (&ip_next_T0[40])
vop48 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (48)), vop48);
_mm_prefetch((&ip_next_T0[48]), _MM_HINT_T0);
vop56 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (56)), vop56);
// skip unnecessary prefetch of (&ip_next_T0[56])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
_mm256_storeu_ps(&op[32], vop32);
_mm256_storeu_ps(&op[40], vop40);
_mm256_storeu_ps(&op[48], vop48);
_mm256_storeu_ps(&op[56], vop56);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
_mm256_storeu_ps(&op[32], _mm256_mul_ps(vop32, vlen_inv));
_mm256_storeu_ps(&op[40], _mm256_mul_ps(vop40, vlen_inv));
_mm256_storeu_ps(&op[48], _mm256_mul_ps(vop48, vlen_inv));
_mm256_storeu_ps(&op[56], _mm256_mul_ps(vop56, vlen_inv));
}
}
} else if (block_size == 32) {
// unrolling 4 times
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const float* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const float* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (0)), vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (8)), vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (16)), vop16);
_mm_prefetch((&ip_next_T0[16]), _MM_HINT_T0);
vop24 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (24)), vop24);
// skip unnecessary prefetch of (&ip_next_T0[24])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
}
}
} else if (block_size == 16) {
// unrolling 2 times
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const float* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const float* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (0)), vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (8)), vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
}
}
} else {
// generic code
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
int64_t j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(op + j, _mm256_setzero_ps());
}
for (; j < block_size; j++) {
op[j] = 0.0f;
}
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const float* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const float* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(
&op[j],
_mm256_fmadd_ps(
vwgt, _mm256_loadu_ps(&ip[j]), _mm256_loadu_ps(&op[j])));
_mm_prefetch((&ip_next_T0[j]), _MM_HINT_T0);
}
for (; j < block_size; j++) {
op[j] += wgt * ip[j];
}
}
if (normalize_by_lengths && lengths[rangeIndex]) {
float len_inv = 1.0f / lengths[rangeIndex];
__m256 vlen_inv = _mm256_set1_ps(len_inv);
j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(
&op[j], _mm256_mul_ps(_mm256_loadu_ps(&op[j]), vlen_inv));
}
for (; j < block_size; j++) {
op[j] = len_inv * op[j];
}
}
}
}
}
void EmbeddingLookup_int32_t_float_float_false__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const float* input,
const int32_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
EmbeddingLookup_int32_t_float_float__avx2_fma<false>(
block_size,
output_size,
index_size,
data_size,
input,
indices,
lengths,
weights,
scale_bias,
normalize_by_lengths,
out);
}
void EmbeddingLookup_int32_t_float_float_true__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const float* input,
const int32_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
EmbeddingLookup_int32_t_float_float__avx2_fma<true>(
block_size,
output_size,
index_size,
data_size,
input,
indices,
lengths,
weights,
scale_bias,
normalize_by_lengths,
out);
}
template <bool IS_WEIGHT_POSITIONAL>
static void EmbeddingLookup_int64_t_float_float__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const float* input,
const int64_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
const int64_t prefdist_T0 = 16;
const int64_t fused_block_size = block_size + 0;
CAFFE_ENFORCE(scale_bias == nullptr, "scale_bias must be nullptr");
if (block_size == 128) {
// unrolling 16 times
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
__m256 vop32 = _mm256_setzero_ps();
__m256 vop40 = _mm256_setzero_ps();
__m256 vop48 = _mm256_setzero_ps();
__m256 vop56 = _mm256_setzero_ps();
__m256 vop64 = _mm256_setzero_ps();
__m256 vop72 = _mm256_setzero_ps();
__m256 vop80 = _mm256_setzero_ps();
__m256 vop88 = _mm256_setzero_ps();
__m256 vop96 = _mm256_setzero_ps();
__m256 vop104 = _mm256_setzero_ps();
__m256 vop112 = _mm256_setzero_ps();
__m256 vop120 = _mm256_setzero_ps();
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const float* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const float* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (0)), vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (8)), vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (16)), vop16);
_mm_prefetch((&ip_next_T0[16]), _MM_HINT_T0);
vop24 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (24)), vop24);
// skip unnecessary prefetch of (&ip_next_T0[24])
vop32 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (32)), vop32);
_mm_prefetch((&ip_next_T0[32]), _MM_HINT_T0);
vop40 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (40)), vop40);
// skip unnecessary prefetch of (&ip_next_T0[40])
vop48 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (48)), vop48);
_mm_prefetch((&ip_next_T0[48]), _MM_HINT_T0);
vop56 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (56)), vop56);
// skip unnecessary prefetch of (&ip_next_T0[56])
vop64 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (64)), vop64);
_mm_prefetch((&ip_next_T0[64]), _MM_HINT_T0);
vop72 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (72)), vop72);
// skip unnecessary prefetch of (&ip_next_T0[72])
vop80 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (80)), vop80);
_mm_prefetch((&ip_next_T0[80]), _MM_HINT_T0);
vop88 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (88)), vop88);
// skip unnecessary prefetch of (&ip_next_T0[88])
vop96 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (96)), vop96);
_mm_prefetch((&ip_next_T0[96]), _MM_HINT_T0);
vop104 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (104)), vop104);
// skip unnecessary prefetch of (&ip_next_T0[104])
vop112 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (112)), vop112);
_mm_prefetch((&ip_next_T0[112]), _MM_HINT_T0);
vop120 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (120)), vop120);
// skip unnecessary prefetch of (&ip_next_T0[120])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
_mm256_storeu_ps(&op[32], vop32);
_mm256_storeu_ps(&op[40], vop40);
_mm256_storeu_ps(&op[48], vop48);
_mm256_storeu_ps(&op[56], vop56);
_mm256_storeu_ps(&op[64], vop64);
_mm256_storeu_ps(&op[72], vop72);
_mm256_storeu_ps(&op[80], vop80);
_mm256_storeu_ps(&op[88], vop88);
_mm256_storeu_ps(&op[96], vop96);
_mm256_storeu_ps(&op[104], vop104);
_mm256_storeu_ps(&op[112], vop112);
_mm256_storeu_ps(&op[120], vop120);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
_mm256_storeu_ps(&op[32], _mm256_mul_ps(vop32, vlen_inv));
_mm256_storeu_ps(&op[40], _mm256_mul_ps(vop40, vlen_inv));
_mm256_storeu_ps(&op[48], _mm256_mul_ps(vop48, vlen_inv));
_mm256_storeu_ps(&op[56], _mm256_mul_ps(vop56, vlen_inv));
_mm256_storeu_ps(&op[64], _mm256_mul_ps(vop64, vlen_inv));
_mm256_storeu_ps(&op[72], _mm256_mul_ps(vop72, vlen_inv));
_mm256_storeu_ps(&op[80], _mm256_mul_ps(vop80, vlen_inv));
_mm256_storeu_ps(&op[88], _mm256_mul_ps(vop88, vlen_inv));
_mm256_storeu_ps(&op[96], _mm256_mul_ps(vop96, vlen_inv));
_mm256_storeu_ps(&op[104], _mm256_mul_ps(vop104, vlen_inv));
_mm256_storeu_ps(&op[112], _mm256_mul_ps(vop112, vlen_inv));
_mm256_storeu_ps(&op[120], _mm256_mul_ps(vop120, vlen_inv));
}
}
} else if (block_size == 64) {
// unrolling 8 times
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
__m256 vop32 = _mm256_setzero_ps();
__m256 vop40 = _mm256_setzero_ps();
__m256 vop48 = _mm256_setzero_ps();
__m256 vop56 = _mm256_setzero_ps();
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const float* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const float* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (0)), vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (8)), vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (16)), vop16);
_mm_prefetch((&ip_next_T0[16]), _MM_HINT_T0);
vop24 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (24)), vop24);
// skip unnecessary prefetch of (&ip_next_T0[24])
vop32 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (32)), vop32);
_mm_prefetch((&ip_next_T0[32]), _MM_HINT_T0);
vop40 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (40)), vop40);
// skip unnecessary prefetch of (&ip_next_T0[40])
vop48 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (48)), vop48);
_mm_prefetch((&ip_next_T0[48]), _MM_HINT_T0);
vop56 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (56)), vop56);
// skip unnecessary prefetch of (&ip_next_T0[56])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
_mm256_storeu_ps(&op[32], vop32);
_mm256_storeu_ps(&op[40], vop40);
_mm256_storeu_ps(&op[48], vop48);
_mm256_storeu_ps(&op[56], vop56);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
_mm256_storeu_ps(&op[32], _mm256_mul_ps(vop32, vlen_inv));
_mm256_storeu_ps(&op[40], _mm256_mul_ps(vop40, vlen_inv));
_mm256_storeu_ps(&op[48], _mm256_mul_ps(vop48, vlen_inv));
_mm256_storeu_ps(&op[56], _mm256_mul_ps(vop56, vlen_inv));
}
}
} else if (block_size == 32) {
// unrolling 4 times
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const float* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const float* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (0)), vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (8)), vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (16)), vop16);
_mm_prefetch((&ip_next_T0[16]), _MM_HINT_T0);
vop24 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (24)), vop24);
// skip unnecessary prefetch of (&ip_next_T0[24])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
}
}
} else if (block_size == 16) {
// unrolling 2 times
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const float* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const float* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (0)), vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(vwgt, _mm256_loadu_ps(ip + (8)), vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
}
}
} else {
// generic code
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
int64_t j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(op + j, _mm256_setzero_ps());
}
for (; j < block_size; j++) {
op[j] = 0.0f;
}
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const float* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const float* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(
&op[j],
_mm256_fmadd_ps(
vwgt, _mm256_loadu_ps(&ip[j]), _mm256_loadu_ps(&op[j])));
_mm_prefetch((&ip_next_T0[j]), _MM_HINT_T0);
}
for (; j < block_size; j++) {
op[j] += wgt * ip[j];
}
}
if (normalize_by_lengths && lengths[rangeIndex]) {
float len_inv = 1.0f / lengths[rangeIndex];
__m256 vlen_inv = _mm256_set1_ps(len_inv);
j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(
&op[j], _mm256_mul_ps(_mm256_loadu_ps(&op[j]), vlen_inv));
}
for (; j < block_size; j++) {
op[j] = len_inv * op[j];
}
}
}
}
}
void EmbeddingLookup_int64_t_float_float_false__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const float* input,
const int64_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
EmbeddingLookup_int64_t_float_float__avx2_fma<false>(
block_size,
output_size,
index_size,
data_size,
input,
indices,
lengths,
weights,
scale_bias,
normalize_by_lengths,
out);
}
void EmbeddingLookup_int64_t_float_float_true__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const float* input,
const int64_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
EmbeddingLookup_int64_t_float_float__avx2_fma<true>(
block_size,
output_size,
index_size,
data_size,
input,
indices,
lengths,
weights,
scale_bias,
normalize_by_lengths,
out);
}
template <bool IS_WEIGHT_POSITIONAL>
static void EmbeddingLookup_int32_t_half_float__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const at::Half* input,
const int32_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
const int32_t prefdist_T0 = 16;
const int32_t fused_block_size = block_size + 0;
CAFFE_ENFORCE(scale_bias == nullptr, "scale_bias must be nullptr");
if (block_size == 128) {
// unrolling 16 times
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
__m256 vop32 = _mm256_setzero_ps();
__m256 vop40 = _mm256_setzero_ps();
__m256 vop48 = _mm256_setzero_ps();
__m256 vop56 = _mm256_setzero_ps();
__m256 vop64 = _mm256_setzero_ps();
__m256 vop72 = _mm256_setzero_ps();
__m256 vop80 = _mm256_setzero_ps();
__m256 vop88 = _mm256_setzero_ps();
__m256 vop96 = _mm256_setzero_ps();
__m256 vop104 = _mm256_setzero_ps();
__m256 vop112 = _mm256_setzero_ps();
__m256 vop120 = _mm256_setzero_ps();
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const at::Half* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const at::Half* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (0)))),
vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (8)))),
vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (16)))),
vop16);
// skip unnecessary prefetch of (&ip_next_T0[16])
vop24 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (24)))),
vop24);
// skip unnecessary prefetch of (&ip_next_T0[24])
vop32 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (32)))),
vop32);
_mm_prefetch((&ip_next_T0[32]), _MM_HINT_T0);
vop40 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (40)))),
vop40);
// skip unnecessary prefetch of (&ip_next_T0[40])
vop48 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (48)))),
vop48);
// skip unnecessary prefetch of (&ip_next_T0[48])
vop56 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (56)))),
vop56);
// skip unnecessary prefetch of (&ip_next_T0[56])
vop64 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (64)))),
vop64);
_mm_prefetch((&ip_next_T0[64]), _MM_HINT_T0);
vop72 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (72)))),
vop72);
// skip unnecessary prefetch of (&ip_next_T0[72])
vop80 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (80)))),
vop80);
// skip unnecessary prefetch of (&ip_next_T0[80])
vop88 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (88)))),
vop88);
// skip unnecessary prefetch of (&ip_next_T0[88])
vop96 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (96)))),
vop96);
_mm_prefetch((&ip_next_T0[96]), _MM_HINT_T0);
vop104 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (104)))),
vop104);
// skip unnecessary prefetch of (&ip_next_T0[104])
vop112 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (112)))),
vop112);
// skip unnecessary prefetch of (&ip_next_T0[112])
vop120 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (120)))),
vop120);
// skip unnecessary prefetch of (&ip_next_T0[120])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
_mm256_storeu_ps(&op[32], vop32);
_mm256_storeu_ps(&op[40], vop40);
_mm256_storeu_ps(&op[48], vop48);
_mm256_storeu_ps(&op[56], vop56);
_mm256_storeu_ps(&op[64], vop64);
_mm256_storeu_ps(&op[72], vop72);
_mm256_storeu_ps(&op[80], vop80);
_mm256_storeu_ps(&op[88], vop88);
_mm256_storeu_ps(&op[96], vop96);
_mm256_storeu_ps(&op[104], vop104);
_mm256_storeu_ps(&op[112], vop112);
_mm256_storeu_ps(&op[120], vop120);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
_mm256_storeu_ps(&op[32], _mm256_mul_ps(vop32, vlen_inv));
_mm256_storeu_ps(&op[40], _mm256_mul_ps(vop40, vlen_inv));
_mm256_storeu_ps(&op[48], _mm256_mul_ps(vop48, vlen_inv));
_mm256_storeu_ps(&op[56], _mm256_mul_ps(vop56, vlen_inv));
_mm256_storeu_ps(&op[64], _mm256_mul_ps(vop64, vlen_inv));
_mm256_storeu_ps(&op[72], _mm256_mul_ps(vop72, vlen_inv));
_mm256_storeu_ps(&op[80], _mm256_mul_ps(vop80, vlen_inv));
_mm256_storeu_ps(&op[88], _mm256_mul_ps(vop88, vlen_inv));
_mm256_storeu_ps(&op[96], _mm256_mul_ps(vop96, vlen_inv));
_mm256_storeu_ps(&op[104], _mm256_mul_ps(vop104, vlen_inv));
_mm256_storeu_ps(&op[112], _mm256_mul_ps(vop112, vlen_inv));
_mm256_storeu_ps(&op[120], _mm256_mul_ps(vop120, vlen_inv));
}
}
} else if (block_size == 64) {
// unrolling 8 times
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
__m256 vop32 = _mm256_setzero_ps();
__m256 vop40 = _mm256_setzero_ps();
__m256 vop48 = _mm256_setzero_ps();
__m256 vop56 = _mm256_setzero_ps();
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const at::Half* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const at::Half* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (0)))),
vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (8)))),
vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (16)))),
vop16);
// skip unnecessary prefetch of (&ip_next_T0[16])
vop24 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (24)))),
vop24);
// skip unnecessary prefetch of (&ip_next_T0[24])
vop32 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (32)))),
vop32);
_mm_prefetch((&ip_next_T0[32]), _MM_HINT_T0);
vop40 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (40)))),
vop40);
// skip unnecessary prefetch of (&ip_next_T0[40])
vop48 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (48)))),
vop48);
// skip unnecessary prefetch of (&ip_next_T0[48])
vop56 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (56)))),
vop56);
// skip unnecessary prefetch of (&ip_next_T0[56])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
_mm256_storeu_ps(&op[32], vop32);
_mm256_storeu_ps(&op[40], vop40);
_mm256_storeu_ps(&op[48], vop48);
_mm256_storeu_ps(&op[56], vop56);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
_mm256_storeu_ps(&op[32], _mm256_mul_ps(vop32, vlen_inv));
_mm256_storeu_ps(&op[40], _mm256_mul_ps(vop40, vlen_inv));
_mm256_storeu_ps(&op[48], _mm256_mul_ps(vop48, vlen_inv));
_mm256_storeu_ps(&op[56], _mm256_mul_ps(vop56, vlen_inv));
}
}
} else if (block_size == 32) {
// unrolling 4 times
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const at::Half* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const at::Half* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (0)))),
vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (8)))),
vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (16)))),
vop16);
// skip unnecessary prefetch of (&ip_next_T0[16])
vop24 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (24)))),
vop24);
// skip unnecessary prefetch of (&ip_next_T0[24])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
}
}
} else if (block_size == 16) {
// unrolling 2 times
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const at::Half* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const at::Half* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (0)))),
vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (8)))),
vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
}
}
} else {
// generic code
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
int64_t j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(op + j, _mm256_setzero_ps());
}
for (; j < block_size; j++) {
op[j] = 0.0f;
}
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const at::Half* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const at::Half* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(
&op[j],
_mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(_mm_loadu_si128(
reinterpret_cast<const __m128i*>(&ip[j]))),
_mm256_loadu_ps(&op[j])));
_mm_prefetch((&ip_next_T0[j]), _MM_HINT_T0);
}
at::Half vtmp1[8] CAFFE2_ALIGNED(64);
for (; j < block_size; j++) {
vtmp1[0] = ip[j];
__m256 vtmp2 = _mm256_cvtph_ps(*((__m128i*)vtmp1));
op[j] += wgt * ((float*)(&vtmp2))[0];
}
}
if (normalize_by_lengths && lengths[rangeIndex]) {
float len_inv = 1.0f / lengths[rangeIndex];
__m256 vlen_inv = _mm256_set1_ps(len_inv);
j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(
&op[j], _mm256_mul_ps(_mm256_loadu_ps(&op[j]), vlen_inv));
}
for (; j < block_size; j++) {
op[j] = len_inv * op[j];
}
}
}
}
}
void EmbeddingLookup_int32_t_half_float_false__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const at::Half* input,
const int32_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
EmbeddingLookup_int32_t_half_float__avx2_fma<false>(
block_size,
output_size,
index_size,
data_size,
input,
indices,
lengths,
weights,
scale_bias,
normalize_by_lengths,
out);
}
void EmbeddingLookup_int32_t_half_float_true__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const at::Half* input,
const int32_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
EmbeddingLookup_int32_t_half_float__avx2_fma<true>(
block_size,
output_size,
index_size,
data_size,
input,
indices,
lengths,
weights,
scale_bias,
normalize_by_lengths,
out);
}
template <bool IS_WEIGHT_POSITIONAL>
static void EmbeddingLookup_int64_t_half_float__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const at::Half* input,
const int64_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
const int64_t prefdist_T0 = 16;
const int64_t fused_block_size = block_size + 0;
CAFFE_ENFORCE(scale_bias == nullptr, "scale_bias must be nullptr");
if (block_size == 128) {
// unrolling 16 times
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
__m256 vop32 = _mm256_setzero_ps();
__m256 vop40 = _mm256_setzero_ps();
__m256 vop48 = _mm256_setzero_ps();
__m256 vop56 = _mm256_setzero_ps();
__m256 vop64 = _mm256_setzero_ps();
__m256 vop72 = _mm256_setzero_ps();
__m256 vop80 = _mm256_setzero_ps();
__m256 vop88 = _mm256_setzero_ps();
__m256 vop96 = _mm256_setzero_ps();
__m256 vop104 = _mm256_setzero_ps();
__m256 vop112 = _mm256_setzero_ps();
__m256 vop120 = _mm256_setzero_ps();
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const at::Half* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const at::Half* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (0)))),
vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (8)))),
vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (16)))),
vop16);
// skip unnecessary prefetch of (&ip_next_T0[16])
vop24 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (24)))),
vop24);
// skip unnecessary prefetch of (&ip_next_T0[24])
vop32 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (32)))),
vop32);
_mm_prefetch((&ip_next_T0[32]), _MM_HINT_T0);
vop40 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (40)))),
vop40);
// skip unnecessary prefetch of (&ip_next_T0[40])
vop48 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (48)))),
vop48);
// skip unnecessary prefetch of (&ip_next_T0[48])
vop56 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (56)))),
vop56);
// skip unnecessary prefetch of (&ip_next_T0[56])
vop64 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (64)))),
vop64);
_mm_prefetch((&ip_next_T0[64]), _MM_HINT_T0);
vop72 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (72)))),
vop72);
// skip unnecessary prefetch of (&ip_next_T0[72])
vop80 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (80)))),
vop80);
// skip unnecessary prefetch of (&ip_next_T0[80])
vop88 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (88)))),
vop88);
// skip unnecessary prefetch of (&ip_next_T0[88])
vop96 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (96)))),
vop96);
_mm_prefetch((&ip_next_T0[96]), _MM_HINT_T0);
vop104 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (104)))),
vop104);
// skip unnecessary prefetch of (&ip_next_T0[104])
vop112 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (112)))),
vop112);
// skip unnecessary prefetch of (&ip_next_T0[112])
vop120 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (120)))),
vop120);
// skip unnecessary prefetch of (&ip_next_T0[120])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
_mm256_storeu_ps(&op[32], vop32);
_mm256_storeu_ps(&op[40], vop40);
_mm256_storeu_ps(&op[48], vop48);
_mm256_storeu_ps(&op[56], vop56);
_mm256_storeu_ps(&op[64], vop64);
_mm256_storeu_ps(&op[72], vop72);
_mm256_storeu_ps(&op[80], vop80);
_mm256_storeu_ps(&op[88], vop88);
_mm256_storeu_ps(&op[96], vop96);
_mm256_storeu_ps(&op[104], vop104);
_mm256_storeu_ps(&op[112], vop112);
_mm256_storeu_ps(&op[120], vop120);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
_mm256_storeu_ps(&op[32], _mm256_mul_ps(vop32, vlen_inv));
_mm256_storeu_ps(&op[40], _mm256_mul_ps(vop40, vlen_inv));
_mm256_storeu_ps(&op[48], _mm256_mul_ps(vop48, vlen_inv));
_mm256_storeu_ps(&op[56], _mm256_mul_ps(vop56, vlen_inv));
_mm256_storeu_ps(&op[64], _mm256_mul_ps(vop64, vlen_inv));
_mm256_storeu_ps(&op[72], _mm256_mul_ps(vop72, vlen_inv));
_mm256_storeu_ps(&op[80], _mm256_mul_ps(vop80, vlen_inv));
_mm256_storeu_ps(&op[88], _mm256_mul_ps(vop88, vlen_inv));
_mm256_storeu_ps(&op[96], _mm256_mul_ps(vop96, vlen_inv));
_mm256_storeu_ps(&op[104], _mm256_mul_ps(vop104, vlen_inv));
_mm256_storeu_ps(&op[112], _mm256_mul_ps(vop112, vlen_inv));
_mm256_storeu_ps(&op[120], _mm256_mul_ps(vop120, vlen_inv));
}
}
} else if (block_size == 64) {
// unrolling 8 times
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
__m256 vop32 = _mm256_setzero_ps();
__m256 vop40 = _mm256_setzero_ps();
__m256 vop48 = _mm256_setzero_ps();
__m256 vop56 = _mm256_setzero_ps();
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const at::Half* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const at::Half* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (0)))),
vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (8)))),
vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (16)))),
vop16);
// skip unnecessary prefetch of (&ip_next_T0[16])
vop24 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (24)))),
vop24);
// skip unnecessary prefetch of (&ip_next_T0[24])
vop32 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (32)))),
vop32);
_mm_prefetch((&ip_next_T0[32]), _MM_HINT_T0);
vop40 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (40)))),
vop40);
// skip unnecessary prefetch of (&ip_next_T0[40])
vop48 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (48)))),
vop48);
// skip unnecessary prefetch of (&ip_next_T0[48])
vop56 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (56)))),
vop56);
// skip unnecessary prefetch of (&ip_next_T0[56])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
_mm256_storeu_ps(&op[32], vop32);
_mm256_storeu_ps(&op[40], vop40);
_mm256_storeu_ps(&op[48], vop48);
_mm256_storeu_ps(&op[56], vop56);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
_mm256_storeu_ps(&op[32], _mm256_mul_ps(vop32, vlen_inv));
_mm256_storeu_ps(&op[40], _mm256_mul_ps(vop40, vlen_inv));
_mm256_storeu_ps(&op[48], _mm256_mul_ps(vop48, vlen_inv));
_mm256_storeu_ps(&op[56], _mm256_mul_ps(vop56, vlen_inv));
}
}
} else if (block_size == 32) {
// unrolling 4 times
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const at::Half* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const at::Half* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (0)))),
vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (8)))),
vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (16)))),
vop16);
// skip unnecessary prefetch of (&ip_next_T0[16])
vop24 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (24)))),
vop24);
// skip unnecessary prefetch of (&ip_next_T0[24])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
}
}
} else if (block_size == 16) {
// unrolling 2 times
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const at::Half* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const at::Half* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (0)))),
vop0);
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(
_mm_loadu_si128(reinterpret_cast<const __m128i*>(ip + (8)))),
vop8);
// skip unnecessary prefetch of (&ip_next_T0[8])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
}
}
} else {
// generic code
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
int64_t j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(op + j, _mm256_setzero_ps());
}
for (; j < block_size; j++) {
op[j] = 0.0f;
}
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
__m256 vwgt = _mm256_set1_ps(wgt);
const at::Half* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const at::Half* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(
&op[j],
_mm256_fmadd_ps(
vwgt,
_mm256_cvtph_ps(_mm_loadu_si128(
reinterpret_cast<const __m128i*>(&ip[j]))),
_mm256_loadu_ps(&op[j])));
_mm_prefetch((&ip_next_T0[j]), _MM_HINT_T0);
}
at::Half vtmp1[8] CAFFE2_ALIGNED(64);
for (; j < block_size; j++) {
vtmp1[0] = ip[j];
__m256 vtmp2 = _mm256_cvtph_ps(*((__m128i*)vtmp1));
op[j] += wgt * ((float*)(&vtmp2))[0];
}
}
if (normalize_by_lengths && lengths[rangeIndex]) {
float len_inv = 1.0f / lengths[rangeIndex];
__m256 vlen_inv = _mm256_set1_ps(len_inv);
j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(
&op[j], _mm256_mul_ps(_mm256_loadu_ps(&op[j]), vlen_inv));
}
for (; j < block_size; j++) {
op[j] = len_inv * op[j];
}
}
}
}
}
void EmbeddingLookup_int64_t_half_float_false__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const at::Half* input,
const int64_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
EmbeddingLookup_int64_t_half_float__avx2_fma<false>(
block_size,
output_size,
index_size,
data_size,
input,
indices,
lengths,
weights,
scale_bias,
normalize_by_lengths,
out);
}
void EmbeddingLookup_int64_t_half_float_true__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const at::Half* input,
const int64_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
EmbeddingLookup_int64_t_half_float__avx2_fma<true>(
block_size,
output_size,
index_size,
data_size,
input,
indices,
lengths,
weights,
scale_bias,
normalize_by_lengths,
out);
}
template <bool IS_WEIGHT_POSITIONAL>
static void EmbeddingLookup_int32_t_uint8_t_float__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const uint8_t* input,
const int32_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
const int32_t prefdist_T0 = 16;
const int32_t fused_block_size = block_size + 0;
CAFFE_ENFORCE(scale_bias != nullptr, "scale_bias must not be nullptr");
if (block_size == 128) {
// unrolling 16 times
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
__m256 vop32 = _mm256_setzero_ps();
__m256 vop40 = _mm256_setzero_ps();
__m256 vop48 = _mm256_setzero_ps();
__m256 vop56 = _mm256_setzero_ps();
__m256 vop64 = _mm256_setzero_ps();
__m256 vop72 = _mm256_setzero_ps();
__m256 vop80 = _mm256_setzero_ps();
__m256 vop88 = _mm256_setzero_ps();
__m256 vop96 = _mm256_setzero_ps();
__m256 vop104 = _mm256_setzero_ps();
__m256 vop112 = _mm256_setzero_ps();
__m256 vop120 = _mm256_setzero_ps();
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
float bio;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
bio = wgt * scale_bias[2 * idx + 1];
wgt = wgt * scale_bias[2 * idx];
__m256 vbio = _mm256_set1_ps(bio);
__m256 vwgt = _mm256_set1_ps(wgt);
const uint8_t* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const uint8_t* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (0))))),
_mm256_add_ps(vop0, vbio));
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (8))))),
_mm256_add_ps(vop8, vbio));
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (16))))),
_mm256_add_ps(vop16, vbio));
// skip unnecessary prefetch of (&ip_next_T0[16])
vop24 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (24))))),
_mm256_add_ps(vop24, vbio));
// skip unnecessary prefetch of (&ip_next_T0[24])
vop32 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (32))))),
_mm256_add_ps(vop32, vbio));
// skip unnecessary prefetch of (&ip_next_T0[32])
vop40 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (40))))),
_mm256_add_ps(vop40, vbio));
// skip unnecessary prefetch of (&ip_next_T0[40])
vop48 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (48))))),
_mm256_add_ps(vop48, vbio));
// skip unnecessary prefetch of (&ip_next_T0[48])
vop56 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (56))))),
_mm256_add_ps(vop56, vbio));
// skip unnecessary prefetch of (&ip_next_T0[56])
vop64 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (64))))),
_mm256_add_ps(vop64, vbio));
_mm_prefetch((&ip_next_T0[64]), _MM_HINT_T0);
vop72 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (72))))),
_mm256_add_ps(vop72, vbio));
// skip unnecessary prefetch of (&ip_next_T0[72])
vop80 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (80))))),
_mm256_add_ps(vop80, vbio));
// skip unnecessary prefetch of (&ip_next_T0[80])
vop88 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (88))))),
_mm256_add_ps(vop88, vbio));
// skip unnecessary prefetch of (&ip_next_T0[88])
vop96 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (96))))),
_mm256_add_ps(vop96, vbio));
// skip unnecessary prefetch of (&ip_next_T0[96])
vop104 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (104))))),
_mm256_add_ps(vop104, vbio));
// skip unnecessary prefetch of (&ip_next_T0[104])
vop112 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (112))))),
_mm256_add_ps(vop112, vbio));
// skip unnecessary prefetch of (&ip_next_T0[112])
vop120 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (120))))),
_mm256_add_ps(vop120, vbio));
// skip unnecessary prefetch of (&ip_next_T0[120])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
_mm256_storeu_ps(&op[32], vop32);
_mm256_storeu_ps(&op[40], vop40);
_mm256_storeu_ps(&op[48], vop48);
_mm256_storeu_ps(&op[56], vop56);
_mm256_storeu_ps(&op[64], vop64);
_mm256_storeu_ps(&op[72], vop72);
_mm256_storeu_ps(&op[80], vop80);
_mm256_storeu_ps(&op[88], vop88);
_mm256_storeu_ps(&op[96], vop96);
_mm256_storeu_ps(&op[104], vop104);
_mm256_storeu_ps(&op[112], vop112);
_mm256_storeu_ps(&op[120], vop120);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
_mm256_storeu_ps(&op[32], _mm256_mul_ps(vop32, vlen_inv));
_mm256_storeu_ps(&op[40], _mm256_mul_ps(vop40, vlen_inv));
_mm256_storeu_ps(&op[48], _mm256_mul_ps(vop48, vlen_inv));
_mm256_storeu_ps(&op[56], _mm256_mul_ps(vop56, vlen_inv));
_mm256_storeu_ps(&op[64], _mm256_mul_ps(vop64, vlen_inv));
_mm256_storeu_ps(&op[72], _mm256_mul_ps(vop72, vlen_inv));
_mm256_storeu_ps(&op[80], _mm256_mul_ps(vop80, vlen_inv));
_mm256_storeu_ps(&op[88], _mm256_mul_ps(vop88, vlen_inv));
_mm256_storeu_ps(&op[96], _mm256_mul_ps(vop96, vlen_inv));
_mm256_storeu_ps(&op[104], _mm256_mul_ps(vop104, vlen_inv));
_mm256_storeu_ps(&op[112], _mm256_mul_ps(vop112, vlen_inv));
_mm256_storeu_ps(&op[120], _mm256_mul_ps(vop120, vlen_inv));
}
}
} else if (block_size == 64) {
// unrolling 8 times
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
__m256 vop32 = _mm256_setzero_ps();
__m256 vop40 = _mm256_setzero_ps();
__m256 vop48 = _mm256_setzero_ps();
__m256 vop56 = _mm256_setzero_ps();
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
float bio;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
bio = wgt * scale_bias[2 * idx + 1];
wgt = wgt * scale_bias[2 * idx];
__m256 vbio = _mm256_set1_ps(bio);
__m256 vwgt = _mm256_set1_ps(wgt);
const uint8_t* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const uint8_t* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (0))))),
_mm256_add_ps(vop0, vbio));
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (8))))),
_mm256_add_ps(vop8, vbio));
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (16))))),
_mm256_add_ps(vop16, vbio));
// skip unnecessary prefetch of (&ip_next_T0[16])
vop24 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (24))))),
_mm256_add_ps(vop24, vbio));
// skip unnecessary prefetch of (&ip_next_T0[24])
vop32 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (32))))),
_mm256_add_ps(vop32, vbio));
// skip unnecessary prefetch of (&ip_next_T0[32])
vop40 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (40))))),
_mm256_add_ps(vop40, vbio));
// skip unnecessary prefetch of (&ip_next_T0[40])
vop48 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (48))))),
_mm256_add_ps(vop48, vbio));
// skip unnecessary prefetch of (&ip_next_T0[48])
vop56 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (56))))),
_mm256_add_ps(vop56, vbio));
// skip unnecessary prefetch of (&ip_next_T0[56])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
_mm256_storeu_ps(&op[32], vop32);
_mm256_storeu_ps(&op[40], vop40);
_mm256_storeu_ps(&op[48], vop48);
_mm256_storeu_ps(&op[56], vop56);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
_mm256_storeu_ps(&op[32], _mm256_mul_ps(vop32, vlen_inv));
_mm256_storeu_ps(&op[40], _mm256_mul_ps(vop40, vlen_inv));
_mm256_storeu_ps(&op[48], _mm256_mul_ps(vop48, vlen_inv));
_mm256_storeu_ps(&op[56], _mm256_mul_ps(vop56, vlen_inv));
}
}
} else if (block_size == 32) {
// unrolling 4 times
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
float bio;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
bio = wgt * scale_bias[2 * idx + 1];
wgt = wgt * scale_bias[2 * idx];
__m256 vbio = _mm256_set1_ps(bio);
__m256 vwgt = _mm256_set1_ps(wgt);
const uint8_t* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const uint8_t* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (0))))),
_mm256_add_ps(vop0, vbio));
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (8))))),
_mm256_add_ps(vop8, vbio));
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (16))))),
_mm256_add_ps(vop16, vbio));
// skip unnecessary prefetch of (&ip_next_T0[16])
vop24 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (24))))),
_mm256_add_ps(vop24, vbio));
// skip unnecessary prefetch of (&ip_next_T0[24])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
}
}
} else if (block_size == 16) {
// unrolling 2 times
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
float bio;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
bio = wgt * scale_bias[2 * idx + 1];
wgt = wgt * scale_bias[2 * idx];
__m256 vbio = _mm256_set1_ps(bio);
__m256 vwgt = _mm256_set1_ps(wgt);
const uint8_t* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const uint8_t* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (0))))),
_mm256_add_ps(vop0, vbio));
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (8))))),
_mm256_add_ps(vop8, vbio));
// skip unnecessary prefetch of (&ip_next_T0[8])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
}
}
} else {
// generic code
int32_t dataInd = 0;
for (int32_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
int64_t j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(op + j, _mm256_setzero_ps());
}
for (; j < block_size; j++) {
op[j] = 0.0f;
}
for (int32_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int32_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
float bio;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
assert(scale_bias);
bio = wgt * scale_bias[2 * idx + 1];
wgt = wgt * scale_bias[2 * idx];
__m256 vbio = _mm256_set1_ps(bio);
__m256 vwgt = _mm256_set1_ps(wgt);
const uint8_t* ip = &input[idx * fused_block_size];
const int32_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int32_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const uint8_t* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(
&op[j],
_mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(_mm_loadl_epi64(
reinterpret_cast<const __m128i*>(&ip[j])))),
_mm256_add_ps(_mm256_loadu_ps(&op[j]), vbio)));
_mm_prefetch((&ip_next_T0[j]), _MM_HINT_T0);
}
for (; j < block_size; j++) {
op[j] += wgt * ((float)ip[j]) + bio;
}
}
if (normalize_by_lengths && lengths[rangeIndex]) {
float len_inv = 1.0f / lengths[rangeIndex];
__m256 vlen_inv = _mm256_set1_ps(len_inv);
j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(
&op[j], _mm256_mul_ps(_mm256_loadu_ps(&op[j]), vlen_inv));
}
for (; j < block_size; j++) {
op[j] = len_inv * op[j];
}
}
}
}
}
void EmbeddingLookup_int32_t_uint8_t_float_false__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const uint8_t* input,
const int32_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
EmbeddingLookup_int32_t_uint8_t_float__avx2_fma<false>(
block_size,
output_size,
index_size,
data_size,
input,
indices,
lengths,
weights,
scale_bias,
normalize_by_lengths,
out);
}
void EmbeddingLookup_int32_t_uint8_t_float_true__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const uint8_t* input,
const int32_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
EmbeddingLookup_int32_t_uint8_t_float__avx2_fma<true>(
block_size,
output_size,
index_size,
data_size,
input,
indices,
lengths,
weights,
scale_bias,
normalize_by_lengths,
out);
}
template <bool IS_WEIGHT_POSITIONAL>
static void EmbeddingLookup_int64_t_uint8_t_float__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const uint8_t* input,
const int64_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
const int64_t prefdist_T0 = 16;
const int64_t fused_block_size = block_size + 0;
CAFFE_ENFORCE(scale_bias != nullptr, "scale_bias must not be nullptr");
if (block_size == 128) {
// unrolling 16 times
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
__m256 vop32 = _mm256_setzero_ps();
__m256 vop40 = _mm256_setzero_ps();
__m256 vop48 = _mm256_setzero_ps();
__m256 vop56 = _mm256_setzero_ps();
__m256 vop64 = _mm256_setzero_ps();
__m256 vop72 = _mm256_setzero_ps();
__m256 vop80 = _mm256_setzero_ps();
__m256 vop88 = _mm256_setzero_ps();
__m256 vop96 = _mm256_setzero_ps();
__m256 vop104 = _mm256_setzero_ps();
__m256 vop112 = _mm256_setzero_ps();
__m256 vop120 = _mm256_setzero_ps();
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
float bio;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
bio = wgt * scale_bias[2 * idx + 1];
wgt = wgt * scale_bias[2 * idx];
__m256 vbio = _mm256_set1_ps(bio);
__m256 vwgt = _mm256_set1_ps(wgt);
const uint8_t* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const uint8_t* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (0))))),
_mm256_add_ps(vop0, vbio));
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (8))))),
_mm256_add_ps(vop8, vbio));
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (16))))),
_mm256_add_ps(vop16, vbio));
// skip unnecessary prefetch of (&ip_next_T0[16])
vop24 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (24))))),
_mm256_add_ps(vop24, vbio));
// skip unnecessary prefetch of (&ip_next_T0[24])
vop32 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (32))))),
_mm256_add_ps(vop32, vbio));
// skip unnecessary prefetch of (&ip_next_T0[32])
vop40 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (40))))),
_mm256_add_ps(vop40, vbio));
// skip unnecessary prefetch of (&ip_next_T0[40])
vop48 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (48))))),
_mm256_add_ps(vop48, vbio));
// skip unnecessary prefetch of (&ip_next_T0[48])
vop56 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (56))))),
_mm256_add_ps(vop56, vbio));
// skip unnecessary prefetch of (&ip_next_T0[56])
vop64 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (64))))),
_mm256_add_ps(vop64, vbio));
_mm_prefetch((&ip_next_T0[64]), _MM_HINT_T0);
vop72 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (72))))),
_mm256_add_ps(vop72, vbio));
// skip unnecessary prefetch of (&ip_next_T0[72])
vop80 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (80))))),
_mm256_add_ps(vop80, vbio));
// skip unnecessary prefetch of (&ip_next_T0[80])
vop88 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (88))))),
_mm256_add_ps(vop88, vbio));
// skip unnecessary prefetch of (&ip_next_T0[88])
vop96 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (96))))),
_mm256_add_ps(vop96, vbio));
// skip unnecessary prefetch of (&ip_next_T0[96])
vop104 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (104))))),
_mm256_add_ps(vop104, vbio));
// skip unnecessary prefetch of (&ip_next_T0[104])
vop112 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (112))))),
_mm256_add_ps(vop112, vbio));
// skip unnecessary prefetch of (&ip_next_T0[112])
vop120 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (120))))),
_mm256_add_ps(vop120, vbio));
// skip unnecessary prefetch of (&ip_next_T0[120])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
_mm256_storeu_ps(&op[32], vop32);
_mm256_storeu_ps(&op[40], vop40);
_mm256_storeu_ps(&op[48], vop48);
_mm256_storeu_ps(&op[56], vop56);
_mm256_storeu_ps(&op[64], vop64);
_mm256_storeu_ps(&op[72], vop72);
_mm256_storeu_ps(&op[80], vop80);
_mm256_storeu_ps(&op[88], vop88);
_mm256_storeu_ps(&op[96], vop96);
_mm256_storeu_ps(&op[104], vop104);
_mm256_storeu_ps(&op[112], vop112);
_mm256_storeu_ps(&op[120], vop120);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
_mm256_storeu_ps(&op[32], _mm256_mul_ps(vop32, vlen_inv));
_mm256_storeu_ps(&op[40], _mm256_mul_ps(vop40, vlen_inv));
_mm256_storeu_ps(&op[48], _mm256_mul_ps(vop48, vlen_inv));
_mm256_storeu_ps(&op[56], _mm256_mul_ps(vop56, vlen_inv));
_mm256_storeu_ps(&op[64], _mm256_mul_ps(vop64, vlen_inv));
_mm256_storeu_ps(&op[72], _mm256_mul_ps(vop72, vlen_inv));
_mm256_storeu_ps(&op[80], _mm256_mul_ps(vop80, vlen_inv));
_mm256_storeu_ps(&op[88], _mm256_mul_ps(vop88, vlen_inv));
_mm256_storeu_ps(&op[96], _mm256_mul_ps(vop96, vlen_inv));
_mm256_storeu_ps(&op[104], _mm256_mul_ps(vop104, vlen_inv));
_mm256_storeu_ps(&op[112], _mm256_mul_ps(vop112, vlen_inv));
_mm256_storeu_ps(&op[120], _mm256_mul_ps(vop120, vlen_inv));
}
}
} else if (block_size == 64) {
// unrolling 8 times
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
__m256 vop32 = _mm256_setzero_ps();
__m256 vop40 = _mm256_setzero_ps();
__m256 vop48 = _mm256_setzero_ps();
__m256 vop56 = _mm256_setzero_ps();
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
float bio;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
bio = wgt * scale_bias[2 * idx + 1];
wgt = wgt * scale_bias[2 * idx];
__m256 vbio = _mm256_set1_ps(bio);
__m256 vwgt = _mm256_set1_ps(wgt);
const uint8_t* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const uint8_t* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (0))))),
_mm256_add_ps(vop0, vbio));
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (8))))),
_mm256_add_ps(vop8, vbio));
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (16))))),
_mm256_add_ps(vop16, vbio));
// skip unnecessary prefetch of (&ip_next_T0[16])
vop24 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (24))))),
_mm256_add_ps(vop24, vbio));
// skip unnecessary prefetch of (&ip_next_T0[24])
vop32 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (32))))),
_mm256_add_ps(vop32, vbio));
// skip unnecessary prefetch of (&ip_next_T0[32])
vop40 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (40))))),
_mm256_add_ps(vop40, vbio));
// skip unnecessary prefetch of (&ip_next_T0[40])
vop48 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (48))))),
_mm256_add_ps(vop48, vbio));
// skip unnecessary prefetch of (&ip_next_T0[48])
vop56 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (56))))),
_mm256_add_ps(vop56, vbio));
// skip unnecessary prefetch of (&ip_next_T0[56])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
_mm256_storeu_ps(&op[32], vop32);
_mm256_storeu_ps(&op[40], vop40);
_mm256_storeu_ps(&op[48], vop48);
_mm256_storeu_ps(&op[56], vop56);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
_mm256_storeu_ps(&op[32], _mm256_mul_ps(vop32, vlen_inv));
_mm256_storeu_ps(&op[40], _mm256_mul_ps(vop40, vlen_inv));
_mm256_storeu_ps(&op[48], _mm256_mul_ps(vop48, vlen_inv));
_mm256_storeu_ps(&op[56], _mm256_mul_ps(vop56, vlen_inv));
}
}
} else if (block_size == 32) {
// unrolling 4 times
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
__m256 vop16 = _mm256_setzero_ps();
__m256 vop24 = _mm256_setzero_ps();
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
float bio;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
bio = wgt * scale_bias[2 * idx + 1];
wgt = wgt * scale_bias[2 * idx];
__m256 vbio = _mm256_set1_ps(bio);
__m256 vwgt = _mm256_set1_ps(wgt);
const uint8_t* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const uint8_t* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (0))))),
_mm256_add_ps(vop0, vbio));
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (8))))),
_mm256_add_ps(vop8, vbio));
// skip unnecessary prefetch of (&ip_next_T0[8])
vop16 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (16))))),
_mm256_add_ps(vop16, vbio));
// skip unnecessary prefetch of (&ip_next_T0[16])
vop24 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (24))))),
_mm256_add_ps(vop24, vbio));
// skip unnecessary prefetch of (&ip_next_T0[24])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
_mm256_storeu_ps(&op[16], vop16);
_mm256_storeu_ps(&op[24], vop24);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
_mm256_storeu_ps(&op[16], _mm256_mul_ps(vop16, vlen_inv));
_mm256_storeu_ps(&op[24], _mm256_mul_ps(vop24, vlen_inv));
}
}
} else if (block_size == 16) {
// unrolling 2 times
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
__m256 vop0 = _mm256_setzero_ps();
__m256 vop8 = _mm256_setzero_ps();
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
float bio;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
bio = wgt * scale_bias[2 * idx + 1];
wgt = wgt * scale_bias[2 * idx];
__m256 vbio = _mm256_set1_ps(bio);
__m256 vwgt = _mm256_set1_ps(wgt);
const uint8_t* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const uint8_t* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
vop0 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (0))))),
_mm256_add_ps(vop0, vbio));
_mm_prefetch((&ip_next_T0[0]), _MM_HINT_T0);
vop8 = _mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(
_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ip + (8))))),
_mm256_add_ps(vop8, vbio));
// skip unnecessary prefetch of (&ip_next_T0[8])
}
if (normalize_by_lengths == false) {
_mm256_storeu_ps(&op[0], vop0);
_mm256_storeu_ps(&op[8], vop8);
} else if (lengths[rangeIndex]) {
__m256 vlen_inv = _mm256_set1_ps(1.0f / lengths[rangeIndex]);
_mm256_storeu_ps(&op[0], _mm256_mul_ps(vop0, vlen_inv));
_mm256_storeu_ps(&op[8], _mm256_mul_ps(vop8, vlen_inv));
}
}
} else {
// generic code
int64_t dataInd = 0;
for (int64_t rangeIndex = 0; rangeIndex < output_size; ++rangeIndex) {
float* op = &out[rangeIndex * block_size];
int64_t j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(op + j, _mm256_setzero_ps());
}
for (; j < block_size; j++) {
op[j] = 0.0f;
}
for (int64_t start = dataInd; dataInd < start + lengths[rangeIndex];
++dataInd) {
const int64_t idx = indices[dataInd];
CAFFE_ENFORCE(
idx >= 0 && idx < data_size,
"Index ",
dataInd,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
float wgt = 1.f;
float bio;
if (weights) {
wgt = weights[IS_WEIGHT_POSITIONAL ? (dataInd - start) : dataInd];
}
assert(scale_bias);
bio = wgt * scale_bias[2 * idx + 1];
wgt = wgt * scale_bias[2 * idx];
__m256 vbio = _mm256_set1_ps(bio);
__m256 vwgt = _mm256_set1_ps(wgt);
const uint8_t* ip = &input[idx * fused_block_size];
const int64_t next_T0 = (dataInd < index_size - prefdist_T0)
? (dataInd + prefdist_T0)
: dataInd;
const int64_t idx_pref_T0 = indices[next_T0];
CAFFE_ENFORCE(idx_pref_T0 >= 0 && idx_pref_T0 < data_size);
const uint8_t* ip_next_T0 = &input[idx_pref_T0 * fused_block_size];
j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(
&op[j],
_mm256_fmadd_ps(
vwgt,
_mm256_cvtepi32_ps(_mm256_cvtepu8_epi32(_mm_loadl_epi64(
reinterpret_cast<const __m128i*>(&ip[j])))),
_mm256_add_ps(_mm256_loadu_ps(&op[j]), vbio)));
_mm_prefetch((&ip_next_T0[j]), _MM_HINT_T0);
}
for (; j < block_size; j++) {
op[j] += wgt * ((float)ip[j]) + bio;
}
}
if (normalize_by_lengths && lengths[rangeIndex]) {
float len_inv = 1.0f / lengths[rangeIndex];
__m256 vlen_inv = _mm256_set1_ps(len_inv);
j = 0;
for (; j + 8 <= block_size; j += 8) {
_mm256_storeu_ps(
&op[j], _mm256_mul_ps(_mm256_loadu_ps(&op[j]), vlen_inv));
}
for (; j < block_size; j++) {
op[j] = len_inv * op[j];
}
}
}
}
}
void EmbeddingLookup_int64_t_uint8_t_float_false__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const uint8_t* input,
const int64_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
EmbeddingLookup_int64_t_uint8_t_float__avx2_fma<false>(
block_size,
output_size,
index_size,
data_size,
input,
indices,
lengths,
weights,
scale_bias,
normalize_by_lengths,
out);
}
void EmbeddingLookup_int64_t_uint8_t_float_true__avx2_fma(
const int64_t block_size,
const int64_t output_size,
const int64_t index_size,
const int64_t data_size,
const uint8_t* input,
const int64_t* indices,
const int* lengths,
const float* weights,
const float* scale_bias,
bool normalize_by_lengths,
float* out) {
EmbeddingLookup_int64_t_uint8_t_float__avx2_fma<true>(
block_size,
output_size,
index_size,
data_size,
input,
indices,
lengths,
weights,
scale_bias,
normalize_by_lengths,
out);
}
} // namespace caffe2