blob: 57e0f14eb2bab3433a70460237ed392ef935b88a [file] [log] [blame]
#include <catch.hpp>
#include <torch/nn/modules/batchnorm.h>
#include <torch/nn/modules/conv.h>
#include <torch/nn/modules/dropout.h>
#include <torch/nn/modules/linear.h>
#include <torch/optim/adam.h>
#include <torch/optim/optimizer.h>
#include <torch/optim/sgd.h>
#include <torch/tensor.h>
#include <torch/tensor_list_view.h>
#include <torch/utils.h>
#include <test/cpp/api/util.h>
using namespace torch::nn;
using namespace torch::test;
#include <cmath>
#include <iostream>
#include <random>
class CartPole {
// Translated from openai/gym's cartpole.py
public:
double gravity = 9.8;
double masscart = 1.0;
double masspole = 0.1;
double total_mass = (masspole + masscart);
double length = 0.5; // actually half the pole's length;
double polemass_length = (masspole * length);
double force_mag = 10.0;
double tau = 0.02; // seconds between state updates;
// Angle at which to fail the episode
double theta_threshold_radians = 12 * 2 * M_PI / 360;
double x_threshold = 2.4;
int steps_beyond_done = -1;
torch::Tensor state;
double reward;
bool done;
int step_ = 0;
torch::Tensor getState() {
return state;
}
double getReward() {
return reward;
}
double isDone() {
return done;
}
void reset() {
state = torch::empty({4}).uniform_(-0.05, 0.05);
steps_beyond_done = -1;
step_ = 0;
}
CartPole() {
reset();
}
void step(int action) {
auto x = state[0].toCFloat();
auto x_dot = state[1].toCFloat();
auto theta = state[2].toCFloat();
auto theta_dot = state[3].toCFloat();
auto force = (action == 1) ? force_mag : -force_mag;
auto costheta = std::cos(theta);
auto sintheta = std::sin(theta);
auto temp = (force + polemass_length * theta_dot * theta_dot * sintheta) /
total_mass;
auto thetaacc = (gravity * sintheta - costheta * temp) /
(length * (4.0 / 3.0 - masspole * costheta * costheta / total_mass));
auto xacc = temp - polemass_length * thetaacc * costheta / total_mass;
x = x + tau * x_dot;
x_dot = x_dot + tau * xacc;
theta = theta + tau * theta_dot;
theta_dot = theta_dot + tau * thetaacc;
state.data()[0] = x;
state.data()[1] = x_dot;
state.data()[2] = theta;
state.data()[3] = theta_dot;
done = x < -x_threshold || x > x_threshold ||
theta < -theta_threshold_radians || theta > theta_threshold_radians ||
step_ > 200;
if (!done) {
reward = 1.0;
} else if (steps_beyond_done == -1) {
// Pole just fell!
steps_beyond_done = 0;
reward = 0;
} else {
if (steps_beyond_done == 0) {
AT_ASSERT(false); // Can't do this
}
}
step_++;
}
};
template <typename M, typename F, typename O>
bool test_mnist(
uint32_t batch_size,
uint32_t num_epochs,
bool useGPU,
M&& model,
F&& forward_op,
O&& optimizer) {
std::cout << "Training MNIST for " << num_epochs
<< " epochs, rest your eyes for a bit!\n";
struct MNIST_Reader {
FILE* fp_;
explicit MNIST_Reader(const char* path) {
fp_ = fopen(path, "rbe");
if (!fp_)
throw std::runtime_error("failed to open file");
}
~MNIST_Reader() {
if (fp_)
fclose(fp_);
}
uint32_t read_int() {
uint8_t buf[4];
if (fread(buf, sizeof(buf), 1, fp_) != 1) {
throw std::runtime_error("failed to read an integer");
}
return buf[0] << 24u | buf[1] << 16u | buf[2] << 8u | buf[3];
}
uint8_t read_byte() {
uint8_t i;
if (fread(&i, sizeof(i), 1, fp_) != 1) {
throw std::runtime_error("failed to read an byte");
}
return i;
}
};
auto readData = [&](std::string fn) {
MNIST_Reader rd(fn.c_str());
/* int image_magic = */ rd.read_int();
int image_count = rd.read_int();
int image_rows = rd.read_int();
int image_cols = rd.read_int();
auto data = torch::empty({image_count, 1, image_rows, image_cols});
auto a_data = data.accessor<float, 4>();
for (int c = 0; c < image_count; c++) {
for (int i = 0; i < image_rows; i++) {
for (int j = 0; j < image_cols; j++) {
a_data[c][0][i][j] = float(rd.read_byte()) / 255;
}
}
}
return data.toBackend(useGPU ? torch::kCUDA : torch::kCPU);
};
auto readLabels = [&](std::string fn) {
MNIST_Reader rd(fn.c_str());
/* int label_magic = */ rd.read_int();
int label_count = rd.read_int();
auto data = torch::empty({label_count}, torch::kInt64);
auto a_data = data.accessor<int64_t, 1>();
for (int i = 0; i < label_count; ++i) {
a_data[i] = static_cast<int64_t>(rd.read_byte());
}
return data.toBackend(useGPU ? torch::kCUDA : torch::kCPU);
};
auto trdata = readData("test/cpp/api/mnist/train-images-idx3-ubyte");
auto trlabel = readLabels("test/cpp/api/mnist/train-labels-idx1-ubyte");
auto tedata = readData("test/cpp/api/mnist/t10k-images-idx3-ubyte");
auto telabel = readLabels("test/cpp/api/mnist/t10k-labels-idx1-ubyte");
if (useGPU) {
model->to(torch::kCUDA);
}
std::random_device device;
std::mt19937 generator(device());
for (auto epoch = 0U; epoch < num_epochs; epoch++) {
auto shuffled_inds = std::vector<int>(trdata.size(0));
for (int i = 0; i < trdata.size(0); i++) {
shuffled_inds[i] = i;
}
std::shuffle(shuffled_inds.begin(), shuffled_inds.end(), generator);
const auto backend = useGPU ? torch::kCUDA : torch::kCPU;
auto inp =
torch::empty({batch_size, 1, trdata.size(2), trdata.size(3)}, backend);
auto lab =
torch::empty({batch_size}, torch::device(backend).dtype(torch::kInt64));
for (auto p = 0U; p < shuffled_inds.size() - batch_size; p++) {
inp[p % batch_size] = trdata[shuffled_inds[p]];
lab[p % batch_size] = trlabel[shuffled_inds[p]];
if (p % batch_size != batch_size - 1)
continue;
inp.set_requires_grad(true);
torch::Tensor x = forward_op(inp);
inp.set_requires_grad(false);
torch::Tensor y = lab;
torch::Tensor loss = torch::nll_loss(x, y);
optimizer.zero_grad();
loss.backward();
optimizer.step();
}
}
torch::NoGradGuard guard;
auto result = std::get<1>(forward_op(tedata).max(1));
torch::Tensor correct = (result == telabel).toType(torch::kFloat32);
std::cout << "Num correct: " << correct.data().sum().toCFloat() << " out of "
<< telabel.size(0) << std::endl;
return correct.data().sum().toCFloat() > telabel.size(0) * 0.8;
}
TEST_CASE("integration/cartpole") {
torch::manual_seed(0);
std::cerr << "Training episodic policy gradient with a critic for up to 3000"
" episodes, rest your eyes for a bit!\n";
auto model = std::make_shared<SimpleContainer>();
auto linear = model->add(Linear(4, 128), "linear");
auto policyHead = model->add(Linear(128, 2), "policy");
auto valueHead = model->add(Linear(128, 1), "action");
auto optimizer = torch::optim::Adam(model->parameters(), 1e-3);
std::vector<torch::Tensor> saved_log_probs;
std::vector<torch::Tensor> saved_values;
std::vector<float> rewards;
auto forward = [&](torch::Tensor inp) {
auto x = linear->forward(inp).clamp_min(0);
torch::Tensor actions = policyHead->forward(x);
torch::Tensor value = valueHead->forward(x);
return std::make_tuple(torch::softmax(actions, -1), value);
};
auto selectAction = [&](torch::Tensor state) {
// Only work on single state right now, change index to gather for batch
auto out = forward(state);
auto probs = torch::Tensor(std::get<0>(out));
auto value = torch::Tensor(std::get<1>(out));
auto action = probs.data().multinomial(1)[0].toCInt();
// Compute the log prob of a multinomial distribution.
// This should probably be actually implemented in autogradpp...
auto p = probs / probs.sum(-1, true);
auto log_prob = p[action].log();
saved_log_probs.emplace_back(log_prob);
saved_values.push_back(value);
return action;
};
auto finishEpisode = [&]() {
auto R = 0.;
for (int i = rewards.size() - 1; i >= 0; i--) {
R = rewards[i] + 0.99 * R;
rewards[i] = R;
}
auto r_t = torch::from_blob(
rewards.data(), {static_cast<int64_t>(rewards.size())});
r_t = (r_t - r_t.mean()) / (r_t.std() + 1e-5);
std::vector<torch::Tensor> policy_loss;
std::vector<torch::Tensor> value_loss;
for (auto i = 0U; i < saved_log_probs.size(); i++) {
auto r = rewards[i] - saved_values[i].toCFloat();
policy_loss.push_back(-r * saved_log_probs[i]);
value_loss.push_back(torch::smooth_l1_loss(
saved_values[i], torch::ones({1}) * rewards[i]));
}
auto loss = torch::stack(torch::TensorListView(policy_loss)).sum() +
torch::stack(torch::TensorListView(value_loss)).sum();
optimizer.zero_grad();
loss.backward();
optimizer.step();
rewards.clear();
saved_log_probs.clear();
saved_values.clear();
};
auto env = CartPole();
double running_reward = 10.0;
for (auto episode = 0;; episode++) {
env.reset();
auto state = env.getState();
int t = 0;
for (; t < 10000; t++) {
auto action = selectAction(state);
env.step(action);
state = env.getState();
auto reward = env.getReward();
auto done = env.isDone();
rewards.push_back(reward);
if (done)
break;
}
running_reward = running_reward * 0.99 + t * 0.01;
finishEpisode();
/*
if (episode % 10 == 0) {
printf("Episode %i\tLast length: %5d\tAverage length: %.2f\n",
episode, t, running_reward);
}
*/
if (running_reward > 150)
break;
REQUIRE(episode < 3000);
}
}
TEST_CASE("integration/mnist", "[cuda]") {
torch::manual_seed(0);
auto model = std::make_shared<SimpleContainer>();
auto conv1 = model->add(Conv2d(1, 10, 5), "conv1");
auto conv2 = model->add(Conv2d(10, 20, 5), "conv2");
auto drop = Dropout(0.3);
auto drop2d = Dropout2d(0.3);
auto linear1 = model->add(Linear(320, 50), "linear1");
auto linear2 = model->add(Linear(50, 10), "linear2");
auto forward = [&](torch::Tensor x) {
x = torch::max_pool2d(conv1->forward(x), {2, 2}).relu();
x = conv2->forward(x);
x = drop2d->forward(x);
x = torch::max_pool2d(x, {2, 2}).relu();
x = x.view({-1, 320});
x = linear1->forward(x).clamp_min(0);
x = drop->forward(x);
x = linear2->forward(x);
x = torch::log_softmax(x, 1);
return x;
};
auto optimizer = torch::optim::SGD(
model->parameters(), torch::optim::SGDOptions(1e-2).momentum(0.5));
REQUIRE(test_mnist(
32, // batch_size
3, // num_epochs
true, // useGPU
model,
forward,
optimizer));
}
TEST_CASE("integration/mnist/batchnorm", "[cuda]") {
torch::manual_seed(0);
auto model = std::make_shared<SimpleContainer>();
auto conv1 = model->add(Conv2d(1, 10, 5), "conv1");
auto batchnorm2d =
model->add(BatchNorm(BatchNormOptions(10).stateful(true)), "batchnorm2d");
auto conv2 = model->add(Conv2d(10, 20, 5), "conv2");
auto linear1 = model->add(Linear(320, 50), "linear1");
auto batchnorm1 =
model->add(BatchNorm(BatchNormOptions(50).stateful(true)), "batchnorm1");
auto linear2 = model->add(Linear(50, 10), "linear2");
auto forward = [&](torch::Tensor x) {
x = torch::max_pool2d(conv1->forward(x), {2, 2}).relu();
x = batchnorm2d->forward(x);
x = conv2->forward(x);
x = torch::max_pool2d(x, {2, 2}).relu();
x = x.view({-1, 320});
x = linear1->forward(x).clamp_min(0);
x = batchnorm1->forward(x);
x = linear2->forward(x);
x = torch::log_softmax(x, 1);
return x;
};
auto optimizer = torch::optim::SGD(
model->parameters(), torch::optim::SGDOptions(1e-2).momentum(0.5));
REQUIRE(test_mnist(
32, // batch_size
3, // num_epochs
true, // useGPU
model,
forward,
optimizer));
}