| from __future__ import absolute_import, division, print_function, unicode_literals |
| import torch |
| from torch.nn import Conv1d, Conv2d, Conv3d, ReLU, Linear, BatchNorm1d, BatchNorm2d, BatchNorm3d |
| |
| class ConvReLU1d(torch.nn.Sequential): |
| r"""This is a sequential container which calls the Conv 1d and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, relu): |
| assert type(conv) == Conv1d and type(relu) == ReLU, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type(conv), type(relu)) |
| super(ConvReLU1d, self).__init__(conv, relu) |
| |
| class ConvReLU2d(torch.nn.Sequential): |
| r"""This is a sequential container which calls the Conv 2d and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, relu): |
| assert type(conv) == Conv2d and type(relu) == ReLU, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type(conv), type(relu)) |
| super(ConvReLU2d, self).__init__(conv, relu) |
| |
| class ConvReLU3d(torch.nn.Sequential): |
| r"""This is a sequential container which calls the Conv 3d and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, relu): |
| assert type(conv) == Conv3d and type(relu) == ReLU, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type(conv), type(relu)) |
| super(ConvReLU3d, self).__init__(conv, relu) |
| |
| class LinearReLU(torch.nn.Sequential): |
| r"""This is a sequential container which calls the Linear and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, linear, relu): |
| assert type(linear) == Linear and type(relu) == ReLU, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type(linear), type(relu)) |
| super(LinearReLU, self).__init__(linear, relu) |
| |
| class ConvBn1d(torch.nn.Sequential): |
| r"""This is a sequential container which calls the Conv 1d and Batch Norm 1d modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, bn): |
| assert type(conv) == Conv1d and type(bn) == BatchNorm1d, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type(conv), type(bn)) |
| super(ConvBn1d, self).__init__(conv, bn) |
| |
| class ConvBn2d(torch.nn.Sequential): |
| r"""This is a sequential container which calls the Conv 2d and Batch Norm 2d modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, bn): |
| assert type(conv) == Conv2d and type(bn) == BatchNorm2d, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type(conv), type(bn)) |
| super(ConvBn2d, self).__init__(conv, bn) |
| |
| class ConvBnReLU1d(torch.nn.Sequential): |
| r"""This is a sequential container which calls the Conv 1d, Batch Norm 1d, and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, bn, relu): |
| assert type(conv) == Conv1d and type(bn) == BatchNorm1d and \ |
| type(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ |
| .format(type(conv), type(bn), type(relu)) |
| super(ConvBnReLU1d, self).__init__(conv, bn, relu) |
| |
| class ConvBnReLU2d(torch.nn.Sequential): |
| r"""This is a sequential container which calls the Conv 2d, Batch Norm 2d, and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, bn, relu): |
| assert type(conv) == Conv2d and type(bn) == BatchNorm2d and \ |
| type(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ |
| .format(type(conv), type(bn), type(relu)) |
| super(ConvBnReLU2d, self).__init__(conv, bn, relu) |
| |
| class ConvBn3d(torch.nn.Sequential): |
| r"""This is a sequential container which calls the Conv 3d and Batch Norm 3d modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, bn): |
| assert type(conv) == Conv3d and type(bn) == BatchNorm3d, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type(conv), type(bn)) |
| super(ConvBn3d, self).__init__(conv, bn) |
| |
| class ConvBnReLU3d(torch.nn.Sequential): |
| r"""This is a sequential container which calls the Conv 3d, Batch Norm 3d, and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, conv, bn, relu): |
| assert type(conv) == Conv3d and type(bn) == BatchNorm3d and \ |
| type(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \ |
| .format(type(conv), type(bn), type(relu)) |
| super(ConvBnReLU3d, self).__init__(conv, bn, relu) |
| |
| |
| class BNReLU2d(torch.nn.Sequential): |
| r"""This is a sequential container which calls the BatchNorm 2d and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, batch_norm, relu): |
| assert type(batch_norm) == BatchNorm2d and type(relu) == ReLU, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type(batch_norm), type(relu)) |
| super(BNReLU2d, self).__init__(batch_norm, relu) |
| |
| class BNReLU3d(torch.nn.Sequential): |
| r"""This is a sequential container which calls the BatchNorm 3d and ReLU modules. |
| During quantization this will be replaced with the corresponding fused module.""" |
| def __init__(self, batch_norm, relu): |
| assert type(batch_norm) == BatchNorm3d and type(relu) == ReLU, \ |
| 'Incorrect types for input modules{}{}'.format( |
| type(batch_norm), type(relu)) |
| super(BNReLU3d, self).__init__(batch_norm, relu) |