blob: d04cd05deefc30969f14d7d9db87598f59164189 [file] [log] [blame]
import torch
import numpy as np
import torch._C._te as te
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.jit_utils import JitTestCase
import unittest
LLVM_ENABLED = torch._C._llvm_enabled()
def construct_adder(n: int, dtype=torch.float32):
A = te.BufHandle('A', [n], dtype)
B = te.BufHandle('B', [n], dtype)
def compute(i):
return A.load([i]) + B.load([i])
C = te.Compute('C', [n], compute)
loopnest = te.LoopNest([C])
loopnest.prepare_for_codegen()
stmt = te.simplify(loopnest.root_stmt())
return te.construct_codegen('ir_eval', stmt, [A, B, C])
class TestTensorExprPyBind(JitTestCase):
def test_simple_sum(self):
n = 32
cg = construct_adder(n)
tA = torch.randn(n)
tB = torch.randn(n)
tC = torch.empty(n)
cg.call([tA, tB, tC])
torch.testing.assert_close(tA + tB, tC)
def test_call_raw(self):
n = 16
cg = construct_adder(n, dtype=torch.float64)
tA = torch.randn(n, dtype=torch.float64)
tB = torch.randn(n, dtype=torch.float64)
tC = torch.empty(n, dtype=torch.float64)
cg.call_raw([tA.data_ptr(), tB.data_ptr(), tC.data_ptr()])
torch.testing.assert_close(tA + tB, tC)
def test_external_calls(self):
dtype = torch.float32
A = te.BufHandle('A', [1, 4], dtype)
B = te.BufHandle('B', [4, 1], dtype)
C = te.BufHandle('C', [1, 1], dtype)
s = te.ExternalCall(C, "nnc_aten_matmul", [A, B], [])
loopnest = te.LoopNest(s, [C])
loopnest.prepare_for_codegen()
codegen = te.construct_codegen('ir_eval', s, [A, B, C])
tA = torch.ones(1, 4)
tB = torch.ones(4, 1)
tC = torch.empty(1, 1)
codegen.call([tA, tB, tC])
torch.testing.assert_close(torch.matmul(tA, tB), tC)
def test_dynamic_shape(self):
dN = te.VarHandle(torch.int32)
A = te.BufHandle(torch.float64)
B = te.BufHandle(torch.float64)
def compute(i):
return A.load(i) - B.load(i)
C = te.Compute('C', [dN], compute)
loopnest = te.LoopNest([C])
loopnest.prepare_for_codegen()
cg = te.construct_codegen(
'ir_eval',
loopnest.simplify(),
[A, B, C, dN])
def test_with_shape(n):
tA = torch.randn(n, dtype=torch.double)
tB = torch.randn(n, dtype=torch.double)
tC = torch.empty(n, dtype=torch.double)
cg.call([tA, tB, tC, n])
torch.testing.assert_close(tA - tB, tC)
test_with_shape(8)
test_with_shape(31)
def test_dtype_error(self):
te.BufHandle('a', [1], torch.float32) # ok
self.assertRaises(TypeError, lambda: te.BufHandle('a', [1], "float55"))
@unittest.skipIf(not LLVM_ENABLED, "LLVM backend not enabled")
def test_kernel_with_tensor_inputs(self):
def f(a, b, c):
return a + b + c
device, size = 'cpu', (4, 4)
x = torch.rand(size, device=device)
y = torch.rand(size, device=device)
z = torch.rand(size, device=device)
graph_str = """
graph(%a.1 : Float(4, 4, strides=[4, 1], requires_grad=0, device=cpu),
%b.1 : Float(4, 4, strides=[4, 1], requires_grad=0, device=cpu),
%c.1 : Float(4, 4, strides=[4, 1], requires_grad=0, device=cpu)):
%6 : int = prim::Constant[value=1]()
%7 : Float(4, 4, strides=[4, 1], requires_grad=0, device=cpu) = aten::add(%a.1, %b.1, %6)
%3 : Float(4, 4, strides=[4, 1], requires_grad=0, device=cpu) = aten::add(%7, %c.1, %6)
return (%3)
"""
graph = torch._C.parse_ir(graph_str)
kernel = te.TensorExprKernel(graph)
res1 = kernel.run((x, y, z))
res2 = kernel.fallback((x, y, z))
correct = f(x, y, z)
np.testing.assert_allclose(res1.numpy(), correct.numpy(), atol=2e-3)
np.testing.assert_allclose(res2.numpy(), correct.numpy(), atol=2e-3)
@unittest.skipIf(not LLVM_ENABLED, "LLVM backend not enabled")
def test_kernel_with_scalar_inputs(self):
def f(a, b, c):
return a + b + c
x = torch.tensor(0.1, dtype=torch.float, device='cpu')
y = torch.tensor(0.6, dtype=torch.float, device='cpu')
z = torch.tensor(0.7, dtype=torch.float, device='cpu')
graph_str = """
graph(%a.1 : Float(requires_grad=0, device=cpu),
%b.1 : Float(requires_grad=0, device=cpu),
%c.1 : Float(requires_grad=0, device=cpu)):
%3 : int = prim::Constant[value=1]()
%6 : Float(requires_grad=0, device=cpu) = aten::add(%a.1, %b.1, %3)
%9 : Float(requires_grad=0, device=cpu) = aten::add(%6, %c.1, %3)
return (%9)
"""
graph = torch._C.parse_ir(graph_str)
kernel = te.TensorExprKernel(graph)
res1 = kernel.run((x, y, z))
res2 = kernel.fallback((x, y, z))
correct = f(x, y, z)
np.testing.assert_allclose(res1.numpy(), correct.numpy(), atol=2e-3)
np.testing.assert_allclose(res2.numpy(), correct.numpy(), atol=2e-3)
@unittest.skipIf(not LLVM_ENABLED, "LLVM backend not enabled")
def test_kernel_shape_prop(self):
device, size = 'cpu', (4, 4)
x = torch.rand(size, device=device)
y = torch.rand(size, device=device)
graph_str = """
graph(%a : Tensor, %b : Tensor):
%c : Tensor = aten::mul(%a, %b)
return (%c)
"""
graph = torch._C.parse_ir(graph_str)
exception_thrown = False
try:
kernel = te.TensorExprKernel(graph)
except RuntimeError:
# Graph doesn't have shape info for inputs => compilation should
# fail
exception_thrown = True
pass
assert exception_thrown
# Inject shape info and try compiling again
example_inputs = [torch.rand(4, 4), torch.rand(4, 4)]
torch._C._te.annotate_input_shapes(graph, example_inputs)
torch._C._jit_pass_propagate_shapes_on_graph(graph)
# Now compilation should pass
kernel = te.TensorExprKernel(graph)
res = kernel.run((x, y))
correct = torch.mul(x, y)
np.testing.assert_allclose(res.numpy(), correct.numpy(), atol=1e-5)
@unittest.skipIf(not LLVM_ENABLED, "LLVM backend not enabled")
def test_kernel_shape_prop_module(self):
class TestModule(torch.nn.Module):
def forward(self, x, y):
return x * x + y
graph = torch.jit.script(TestModule()).graph
# Try compiling the graph as-is. It should fail because it doesn't have
# shape info.
exception_thrown = False
try:
kernel = te.TensorExprKernel(graph)
except RuntimeError:
exception_thrown = True
pass
assert exception_thrown
# Try injecting shape info for graph inputs
example_inputs = [torch.rand(4, 4), torch.rand(4, 4)]
exception_thrown = False
try:
torch._C._te.annotate_input_shapes(graph, example_inputs)
except RuntimeError:
# Graph has a 'self' argument for which we can't set shapes
exception_thrown = True
pass
assert exception_thrown
# Remove 'self' argument and try annotating shapes one more time
torch._C._te.remove_unused_self_argument(graph)
# Inject shape info and try compiling again
torch._C._te.annotate_input_shapes(graph, example_inputs)
torch._C._jit_pass_propagate_shapes_on_graph(graph)
# Now compilation should pass
kernel = te.TensorExprKernel(graph)
device, size = 'cpu', (4, 4)
x = torch.rand(size, device=device)
y = torch.rand(size, device=device)
res = kernel.run((x, y))
correct = TestModule().forward(x, y)
np.testing.assert_allclose(res.numpy(), correct.numpy(), atol=1e-5)
@unittest.skipIf(not LLVM_ENABLED, "LLVM backend not enabled")
def test_kernel_with_t(self):
def f(a):
return a.t()
device, size = 'cpu', (3, 4)
x = torch.rand(size, device=device)
graph_str = """
graph(%a.1 : Float(3, 4, strides=[4, 1], requires_grad=0, device=cpu)):
%3 : Float(4, 3, strides=[4, 1], requires_grad=0, device=cpu) = aten::t(%a.1)
return (%3)
"""
graph = torch._C.parse_ir(graph_str)
kernel = te.TensorExprKernel(graph)
res1 = kernel.run((x,))
res2 = kernel.fallback((x,))
correct = f(x)
np.testing.assert_allclose(res1.numpy(), correct.numpy(), atol=2e-3)
np.testing.assert_allclose(res2.numpy(), correct.numpy(), atol=2e-3)
@unittest.skipIf(not LLVM_ENABLED, "LLVM backend not enabled")
def test_kernel_with_transpose(self):
def f(a):
return a.transpose(-1, -2)
device, size = 'cpu', (3, 4)
x = torch.rand(size, device=device)
graph_str = """
graph(%a.1 : Float(3, 4, strides=[4, 1], requires_grad=0, device=cpu)):
%2 : int = prim::Constant[value=-1]()
%3 : int = prim::Constant[value=-2]()
%4 : Float(4, 3, strides=[4, 1], requires_grad=0, device=cpu) = aten::transpose(%a.1, %2, %3)
return (%4)
"""
graph = torch._C.parse_ir(graph_str)
kernel = te.TensorExprKernel(graph)
res1 = kernel.run((x,))
res2 = kernel.fallback((x,))
correct = f(x)
np.testing.assert_allclose(res1.numpy(), correct.numpy(), atol=2e-3)
np.testing.assert_allclose(res2.numpy(), correct.numpy(), atol=2e-3)
@unittest.skipIf(not LLVM_ENABLED, "LLVM backend not enabled")
def test_kernel_with_permute(self):
def f(a):
return a.permute([2, 1, 0])
device, size = 'cpu', (3, 4, 5)
x = torch.rand(size, device=device)
graph_str = """
graph(%a.1 : Float(3, 4, 5, strides=[20, 5, 1], requires_grad=0, device=cpu)):
%1 : int = prim::Constant[value=2]()
%2 : int = prim::Constant[value=1]()
%3 : int = prim::Constant[value=0]()
%4 : int[] = prim::ListConstruct(%1, %2, %3)
%5 : Float(5, 4, 3, strides=[12, 3, 1], requires_grad=0, device=cpu) = aten::permute(%a.1, %4)
return (%5)
"""
graph = torch._C.parse_ir(graph_str)
kernel = te.TensorExprKernel(graph)
res1 = kernel.run((x,))
res2 = kernel.fallback((x,))
correct = f(x)
np.testing.assert_allclose(res1.numpy(), correct.numpy(), atol=2e-3)
np.testing.assert_allclose(res2.numpy(), correct.numpy(), atol=2e-3)
@unittest.skipIf(not LLVM_ENABLED, "LLVM backend not enabled")
def test_kernel_with_custom_lowering(self):
def f(a):
return a.nan_to_num()
device = 'cpu'
x = torch.ones((2, 2), device=device)
x[0, 0] = x[1, 1] = torch.nan
graph_str = """
graph(%x : Float(2, 2, strides=[2, 1], requires_grad=0, device=cpu)):
%none : NoneType = prim::Constant()
%y : Float(2, 2, strides=[2, 1], requires_grad=0, device=cpu) = aten::nan_to_num(%x, %none, %none, %none)
return (%y)
"""
graph = torch._C.parse_ir(graph_str)
def my_custom_lowering(inputs, out_shape, out_type, device):
def get_dim_args(dims):
dim_args = []
for dim in dims:
dim_args.append(te.DimArg(dim, 'i' + str(len(dim_args))))
return dim_args
def compute(idxs):
load = inputs[0].as_buf().load(idxs)
return te.ifThenElse(te.ExprHandle.isnan(load), te.ExprHandle.float(0.), load)
return te.Compute2("custom_nan_to_num", get_dim_args(out_shape), compute)
kernel = te.TensorExprKernel(graph, {'aten::nan_to_num' : my_custom_lowering})
res1 = kernel.run((x,))
res2 = kernel.fallback((x,))
correct = f(x)
np.testing.assert_allclose(res1.numpy(), correct.numpy(), atol=2e-3)
np.testing.assert_allclose(res2.numpy(), correct.numpy(), atol=2e-3)
@unittest.skipIf(not LLVM_ENABLED, "LLVM backend not enabled")
def test_kernel_with_expand(self):
def f(a):
return a.expand((2, 3, 4))
device = 'cpu'
x = torch.rand((1, 3, 1), device=device)
graph_str = """
graph(%a : Float(1, 3, 1, strides=[3, 1, 1], requires_grad=0, device=cpu)):
%1 : int = prim::Constant[value=2]()
%2 : int = prim::Constant[value=3]()
%3 : int = prim::Constant[value=4]()
%4 : int[] = prim::ListConstruct(%1, %2, %3)
%5 : bool = prim::Constant[value=0]()
%6 : Float(2, 3, 4, strides=[12, 4, 0], requires_grad=0, device=cpu) = aten::expand(%a, %4, %5)
return (%6)
"""
graph = torch._C.parse_ir(graph_str)
kernel = te.TensorExprKernel(graph)
res1 = kernel.run((x,))
res2 = kernel.fallback((x,))
correct = f(x)
np.testing.assert_allclose(res1.numpy(), correct.numpy(), atol=2e-3)
np.testing.assert_allclose(res2.numpy(), correct.numpy(), atol=2e-3)
@unittest.skipIf(not LLVM_ENABLED, "LLVM backend not enabled")
def test_alloc_in_loop(self):
a, tmp, b = [te.BufHandle(name, [1], torch.float32) for name in ["a", "tmp", "b"]]
body = te.Block([
tmp.store([0], a.load([0])),
b.store([0], tmp.load([0]))
])
for _ in range(4):
i = te.VarHandle("i", torch.int32)
body = te.For.make(i, 0, 100, body)
nest = te.LoopNest(body, [b])
nest.prepare_for_codegen()
f = te.construct_codegen("llvm", nest.simplify(), [a, b])
ta, tb = [torch.ones(1) for _ in range(2)]
f.call([ta.data_ptr(), tb.data_ptr()])
if __name__ == '__main__':
run_tests()