blob: 36b5483ce92f13916699ed4015ad91a1a3597f62 [file] [log] [blame]
#include "torch/csrc/utils/pybind.h"
#include "torch/csrc/jit/python_tracer.h"
#include "torch/csrc/jit/tracer.h"
#include "torch/csrc/jit/python_ir.h"
#include "torch/csrc/jit/python_arg_flatten.h"
#include "torch/csrc/jit/export.h"
#include "torch/csrc/jit/python_compiled_function.h"
#include "torch/csrc/jit/passes/graph_fuser.h"
#include "torch/csrc/jit/passes/onnx.h"
#include "torch/csrc/jit/passes/dead_code_elimination.h"
#include "torch/csrc/jit/passes/common_subexpression_elimination.h"
#include "torch/csrc/jit/passes/peephole.h"
#include "torch/csrc/jit/passes/canonicalize.h"
#include "torch/csrc/jit/passes/onnx/peephole.h"
#include "torch/csrc/jit/graph_executor.h"
#include "torch/csrc/jit/script/init.h"
#include "torch/csrc/jit/script/python_tree_views.h"
namespace torch { namespace jit {
namespace {
bool loadPythonClasses() {
// Leaving this code here, because it will likely be useful at some point
//PyObject *jit_module = PyImport_ImportModule("torch.jit");
//THPUtils_assert(jit_module, "class loader couldn't access "
//"torch.jit module");
//PyObject *jit_dict = PyModule_GetDict(jit_module);
return true;
}
template<void (*F)(std::shared_ptr<Graph>& graph)>
void graph_pass(const std::shared_ptr<tracer::TracingState>& state) {
return F(state->graph);
}
// This is a temporary constructor so that we can write python tests of
// the executor. It does not have most of the functionality of CompiledFunction
// such as being able to hold parameters...
GraphExecutor createExecutorByTracing(py::function func, std::vector<tracer::TraceInput> inputs, bool optimize) {
auto enter_info = tracer::enter(std::move(inputs), 1);
py::tuple py_inputs(enter_info.second.size());
for(size_t i = 0; i < enter_info.second.size(); ++i) {
py_inputs[i] = py::cast(enter_info.second[i]);
}
// Call back into Python function
auto out = py::reinterpret_steal<py::object>(PyObject_CallObject(func.ptr(), py_inputs.ptr()));
if (!out)
throw py::error_already_set();
std::vector<autograd::Variable> outputs;
if(PyTuple_Check(out.ptr())) {
outputs = py::cast<std::vector<autograd::Variable>>(out);
} else {
outputs.push_back(py::cast<autograd::Variable>(out));
}
tracer::exit(outputs);
auto graph = enter_info.first->graph;
EliminateDeadCode(graph);
return GraphExecutor(std::move(graph), optimize);
}
// we cannot use the default py:cast<autograd::Variable> because it currently
// unwraps the data tensor in the conversion process
// TODO: replace with bs type
variable_tensor_list createVariableTensorList(py::tuple tuple) {
variable_tensor_list result;
result.reserve(tuple.size());
for(auto e : tuple) {
result.push_back(py::cast<autograd::Variable>(e));
}
return result;
}
} // anonymous namespace
extern std::string runJITCPPTests();
void initJITBindings(PyObject *module) {
auto m = py::handle(module).cast<py::module>();
py::class_<python::IODescriptor>(m, "IODescriptor");
m.def("_jit_init", loadPythonClasses)
.def("_jit_pass_onnx", ToONNX)
.def("_jit_pass_onnx_peephole", graph_pass<PeepholeOptimizeONNX>)
.def("_jit_pass_fuse", graph_pass<FuseGraph>)
.def("_jit_pass_dce", graph_pass<EliminateDeadCode>)
.def("_jit_pass_cse", graph_pass<EliminateCommonSubexpression>)
.def("_jit_pass_peephole", graph_pass<PeepholeOptimize>)
.def("_jit_pass_canonicalize", graph_pass<Canonicalize>)
.def("_jit_pass_lint", graph_pass<LintGraph>)
.def("_jit_run_cpp_tests", runJITCPPTests)
.def("_jit_flatten", [](py::handle& obj) {
auto res = python::flatten(obj);
return std::make_pair(res.vars, res.desc);
})
.def("_jit_unflatten", [](autograd::variable_list vars, python::IODescriptor& desc) {
return py::reinterpret_steal<py::object>(python::unflatten(vars, desc));
});
py::class_<GraphExecutor>(m, "GraphExecutor")
.def(
py::init([](py::function func,
std::vector<tracer::TraceInput> inputs,
bool optimize) {
return createExecutorByTracing(func, std::move(inputs), optimize);
}),
py::arg("func"),
py::arg("inputs"),
py::arg("optimize") = true)
.def(
py::init([](std::shared_ptr<Graph> graph, bool optimize) {
return GraphExecutor(std::move(graph), optimize);
}),
py::arg("graph"),
py::arg("optimize") = true)
.def("__call__", [](GraphExecutor& ge, py::args args) -> py::object {
auto inputs = createVariableTensorList(args);
auto outputs = ge.run(std::move(inputs));
// if we don't tell pybind these are variables it chokes on the
// conversion.
// TODO: fix conversions to be sane and make sure this works.
if(outputs.size() == 1) {
return py::cast(static_cast<autograd::Variable&>(outputs[0]));
} else {
py::tuple tuple(outputs.size());
for(size_t i = 0; i < outputs.size(); i++) {
tuple[i] = py::cast(static_cast<autograd::Variable&>(outputs[i]));
}
return tuple;
}
});
initPythonIRBindings(module);
initPythonTracerBindings(module);
python::initCompilerMixin(module);
script::initTreeViewBindings(module);
script::initJitScriptBindings(module);
}
}}