blob: 15e9ae4641fe62401d82612aa2528e441ba3785a [file] [log] [blame]
from numbers import Number
import math
import torch
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all
class Cauchy(Distribution):
r"""
Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of
independent normally distributed random variables with means `0` follows a
Cauchy distribution.
Example::
>>> m = Cauchy(torch.Tensor([0.0]), torch.Tensor([1.0]))
>>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1
2.3214
[torch.FloatTensor of size 1]
Args:
loc (float or Tensor or Variable): mode or median of the distribution.
scale (float or Tensor or Variable): half width at half maximum.
"""
has_rsample = True
def __init__(self, loc, scale):
self.loc, self.scale = broadcast_all(loc, scale)
if isinstance(loc, Number) and isinstance(scale, Number):
batch_shape = torch.Size()
else:
batch_shape = self.loc.size()
super(Cauchy, self).__init__(batch_shape)
def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
eps = self.loc.new(shape).cauchy_()
return self.loc + eps * self.scale
def log_prob(self, value):
self._validate_log_prob_arg(value)
return -math.log(math.pi) - self.scale.log() - (1 + ((value - self.loc) / self.scale)**2).log()
def entropy(self):
return math.log(4 * math.pi) + self.scale.log()