| from numbers import Number |
| |
| import math |
| |
| import torch |
| from torch.distributions.distribution import Distribution |
| from torch.distributions.utils import broadcast_all |
| |
| |
| class Cauchy(Distribution): |
| r""" |
| Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of |
| independent normally distributed random variables with means `0` follows a |
| Cauchy distribution. |
| |
| Example:: |
| |
| >>> m = Cauchy(torch.Tensor([0.0]), torch.Tensor([1.0])) |
| >>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1 |
| 2.3214 |
| [torch.FloatTensor of size 1] |
| |
| Args: |
| loc (float or Tensor or Variable): mode or median of the distribution. |
| scale (float or Tensor or Variable): half width at half maximum. |
| """ |
| has_rsample = True |
| |
| def __init__(self, loc, scale): |
| self.loc, self.scale = broadcast_all(loc, scale) |
| if isinstance(loc, Number) and isinstance(scale, Number): |
| batch_shape = torch.Size() |
| else: |
| batch_shape = self.loc.size() |
| super(Cauchy, self).__init__(batch_shape) |
| |
| def rsample(self, sample_shape=torch.Size()): |
| shape = self._extended_shape(sample_shape) |
| eps = self.loc.new(shape).cauchy_() |
| return self.loc + eps * self.scale |
| |
| def log_prob(self, value): |
| self._validate_log_prob_arg(value) |
| return -math.log(math.pi) - self.scale.log() - (1 + ((value - self.loc) / self.scale)**2).log() |
| |
| def entropy(self): |
| return math.log(4 * math.pi) + self.scale.log() |