| // conv_op_impl.h is the templated implementation of the conv_op.h file. | 
 | #ifndef CAFFE2_OPERATORS_CONV_OP_IMPL_H_ | 
 | #define CAFFE2_OPERATORS_CONV_OP_IMPL_H_ | 
 |  | 
 | #include "caffe2/operators/conv_op.h" | 
 |  | 
 | #include <array> | 
 | #include <vector> | 
 |  | 
 | #include "caffe2/core/context.h" | 
 | #include "caffe2/core/flags.h" | 
 | #include "caffe2/core/logging.h" | 
 | #include "caffe2/core/operator.h" | 
 | #include "caffe2/operators/conv_pool_op_base.h" | 
 | #include "caffe2/utils/eigen_utils.h" | 
 | #include "caffe2/utils/math.h" | 
 |  | 
 | namespace caffe2 { | 
 |  | 
 | template <typename T, class Context> | 
 | bool ConvOp<T, Context>::RunOnDeviceWithOrderNCHW() { | 
 |   const auto& X = Input(INPUT); | 
 |   const auto& filter = Input(FILTER); | 
 |   auto* Y = Output(0); | 
 |   const int N = X.dim32(0); | 
 |   const int C = X.dim32(1); | 
 |   const int G = group_; | 
 |   CAFFE_ENFORCE_EQ(X.dim(), filter.dim()); | 
 |   const int M = filter.dim32(0); | 
 |   CAFFE_ENFORCE_EQ( | 
 |       C, | 
 |       filter.dim32(1) * G, | 
 |       "Convolution op: input channels does not match: # of input channels ", | 
 |       C, | 
 |       " is not equal to kernel channels * group: ", | 
 |       filter.dim32(1), | 
 |       "*", | 
 |       G); | 
 |   CAFFE_ENFORCE_EQ( | 
 |       M % G, 0, "The number of output channels is not divisible by group."); | 
 |  | 
 |   int kernel_size = 1; | 
 |   for (std::size_t i = 0; i < kernel_.size(); ++i) { | 
 |     CAFFE_ENFORCE_EQ(filter.dim32(i + 2), kernel_[i]); | 
 |     kernel_size *= kernel_[i]; | 
 |   } | 
 |   ConvPoolOpBase<Context>::SetOutputSize(X, Y, M); | 
 |  | 
 |   if (N == 0) { | 
 |     Y->template mutable_data<T>(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   const vector<int> X_dims = GetDims(X); | 
 |   const vector<int> Y_dims = GetDims(*Y); | 
 |   const int X_HxW = X.numel() / (N * C); | 
 |   const int Y_HxW = Y->numel() / (N * M); | 
 |   const vector<int> img_shape(X.sizes().cbegin() + 1, X.sizes().cend()); | 
 |   vector<int> buffer_shape(Y_dims.size() + 1); | 
 |   buffer_shape[0] = C * kernel_size; | 
 |   std::copy(Y_dims.cbegin(), Y_dims.cend(), buffer_shape.begin() + 1); | 
 |  | 
 |   const int buffer_size = C * kernel_size * Y_HxW; | 
 |  | 
 |   // The dimension of each kernel | 
 |   const int kernel_dim = C / G * kernel_size; | 
 |   const int X_stride = C * X_HxW; | 
 |   const int Y_stride = M * Y_HxW; | 
 |   const int filter_stride = filter.numel() / G; | 
 |  | 
 |   // The col buffer is stored in CHW order as well - kernel_dim, and the height | 
 |   // and width. | 
 |   const T* X_data = X.template data<T>(); | 
 |   const T* filter_data = filter.template data<T>(); | 
 |   const T* bias_data = nullptr; | 
 |   if (InputSize() == 3) { | 
 |     const auto& bias = Input(BIAS); | 
 |     CAFFE_ENFORCE_EQ(bias.dim(), 1); | 
 |     CAFFE_ENFORCE_EQ(bias.dim32(0), M); | 
 |     bias_data = bias.template data<T>(); | 
 |     ConvPoolOpBase<Context>::template SetBiasMultiplier<T>( | 
 |         Y_HxW, &bias_multiplier_); | 
 |   } | 
 |   T* Y_data = Y->template mutable_data<T>(); | 
 |  | 
 |   // Shortcut for 1x1 conv. | 
 |   if (kernel_size == 1 && !HasPad() && !HasStride()) { | 
 |     return Run1x1ConvOnDeviceWithOrderNCHW( | 
 |         N, C, X_HxW, M, X_data, filter_data, bias_data, Y_data); | 
 |   } | 
 |  | 
 |   const auto func = [&](Tensor* col_buffer) { | 
 |     col_buffer->Resize(buffer_shape); | 
 |     T* col_buffer_data = col_buffer->template mutable_data<T>(); | 
 |     // Im2Col, followed by gemm. | 
 |     for (const auto image_id : c10::irange(N)) { | 
 |       (void)image_id; // Suppress unused variable warning | 
 |       if (kernel_.size() == 2) { | 
 |         math::Im2Col<T, Context, StorageOrder::NCHW>( | 
 |             C, | 
 |             X_dims[0], | 
 |             X_dims[1], | 
 |             kernel_h(), | 
 |             kernel_w(), | 
 |             dilation_h(), | 
 |             dilation_w(), | 
 |             pad_t(), | 
 |             pad_l(), | 
 |             pad_b(), | 
 |             pad_r(), | 
 |             stride_h(), | 
 |             stride_w(), | 
 |             X_data, | 
 |             col_buffer_data, | 
 |             &context_); | 
 |       } else { | 
 |         math::Im2ColNd<T, Context, StorageOrder::NCHW>( | 
 |             kernel_.size(), | 
 |             C * X_HxW, | 
 |             buffer_size, | 
 |             img_shape.data(), | 
 |             buffer_shape.data(), | 
 |             kernel_.data(), | 
 |             stride_.data(), | 
 |             dilation_.data(), | 
 |             pads_.data(), | 
 |             X_data, | 
 |             col_buffer_data, | 
 |             &context_); | 
 |       } | 
 |       // Weight term | 
 |       if (G == 1) { | 
 |         math::Gemm<T, Context>( | 
 |             CblasNoTrans, | 
 |             CblasNoTrans, | 
 |             M, | 
 |             Y_HxW, | 
 |             kernel_dim, | 
 |             1.0f, | 
 |             filter_data, | 
 |             col_buffer_data, | 
 |             0.0f, | 
 |             Y_data, | 
 |             &context_); | 
 |       } else { | 
 |         math::GemmStridedBatched<T, Context>( | 
 |             CblasNoTrans, | 
 |             CblasNoTrans, | 
 |             G, | 
 |             M / G, | 
 |             Y_HxW, | 
 |             kernel_dim, | 
 |             1.0f, | 
 |             filter_data, | 
 |             filter_stride, | 
 |             col_buffer_data, | 
 |             buffer_size / G, | 
 |             0.0f, | 
 |             Y_data, | 
 |             Y_stride / G, | 
 |             &context_); | 
 |       } | 
 |       if (bias_data != nullptr) { | 
 |         // Bias term can be carried out outside the group definition | 
 |         // to be efficient. | 
 |         math::Gemm<T, Context>( | 
 |             CblasNoTrans, | 
 |             CblasNoTrans, | 
 |             M, | 
 |             Y_HxW, | 
 |             1, | 
 |             1.0f, | 
 |             bias_data, | 
 |             bias_multiplier_.template data<T>(), | 
 |             1.0f, | 
 |             Y_data, | 
 |             &context_); | 
 |       } | 
 |       X_data += X_stride; | 
 |       Y_data += Y_stride; | 
 |     } | 
 |   }; | 
 |   if (FLAGS_caffe2_force_shared_col_buffer || shared_buffer_) { | 
 |     runWithSharedBuffer<Context>(ws_, func); | 
 |   } else { | 
 |     func(&col_buffer_); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | // The implementations. | 
 | template <typename T, class Context> | 
 | bool ConvOp<T, Context>::RunOnDeviceWithOrderNHWC() { | 
 |   CAFFE_ENFORCE_LE( | 
 |       kernel_.size(), | 
 |       3, | 
 |       "Only 1-3d convolution is supported for NHWC storage type"); | 
 |   const Tensor& X = Input(INPUT); | 
 |   const auto& filter = Input(FILTER); | 
 |   Tensor* Y = Output(0); | 
 |   const int N = X.dim32(0), C = X.dim32(X.dim() - 1); | 
 |   const int G = group_; | 
 |   CAFFE_ENFORCE_EQ(X.dim(), filter.dim()); | 
 |   const int M = filter.dim32(0); | 
 |   CAFFE_ENFORCE_EQ( | 
 |       C, | 
 |       filter.dim32(filter.dim() - 1) * G, | 
 |       "Convolution op: input channels does not match: # of input channels ", | 
 |       C, | 
 |       " is not equal to kernel channels * group: ", | 
 |       filter.dim32(filter.dim() - 1), | 
 |       "*", | 
 |       G); | 
 |   CAFFE_ENFORCE_EQ( | 
 |       M % G, 0, "The number of output channels is not divisible by group."); | 
 |  | 
 |   int kernel_size = 1; | 
 |   for (std::size_t i = 0; i < kernel_.size(); ++i) { | 
 |     CAFFE_ENFORCE_EQ(filter.dim32(i + 1), kernel_[i]); | 
 |     kernel_size *= kernel_[i]; | 
 |   } | 
 |   ConvPoolOpBase<Context>::SetOutputSize(X, Y, M); | 
 |  | 
 |   if (N == 0) { | 
 |     Y->template mutable_data<T>(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   const vector<int> Y_dims = GetDims(*Y); | 
 |   const int X_HxW = X.numel() / (N * C); | 
 |   const int Y_HxW = Y->numel() / (N * M); | 
 |   const vector<int> img_shape(X.sizes().cbegin() + 1, X.sizes().cend()); | 
 |   vector<int> buffer_shape(Y_dims.size() + 1); | 
 |   std::copy(Y_dims.cbegin(), Y_dims.cend(), buffer_shape.begin()); | 
 |   buffer_shape.back() = C * kernel_size; | 
 |  | 
 |   const int buffer_size = C * kernel_size * Y_HxW; | 
 |  | 
 |   // The dimension of each kernel | 
 |   const int kernel_dim = C / G * kernel_size; | 
 |   // The offset corresponding to a single input image, and a single output | 
 |   // image. | 
 |   const int input_offset = X_HxW * C; | 
 |   const int output_offset = Y->numel() / Y->dim32(0); | 
 |  | 
 |   // The output image size is the spatial size of the output. | 
 |   // The col buffer is stored in HWC order as well - the height and width, and | 
 |   // kernel_dim. | 
 |   const T* X_data = X.template data<T>(); | 
 |   const T* filter_data = filter.template data<T>(); | 
 |   const T* bias_data = nullptr; | 
 |   if (InputSize() == 3) { | 
 |     const auto& bias = Input(BIAS); | 
 |     CAFFE_ENFORCE_EQ(bias.dim(), 1); | 
 |     CAFFE_ENFORCE_EQ(bias.dim32(0), M); | 
 |     bias_data = bias.template data<T>(); | 
 |   } | 
 |   T* Y_data = Y->template mutable_data<T>(); | 
 |  | 
 |   // Specialized path for 1 by 1 convolution with stride 1, pad 0 - we | 
 |   // can skip im2col. | 
 |   if (kernel_dim == (C / group_) && !HasPad() && !HasStride()) { | 
 |     if (bias_data != nullptr) { | 
 |       // For this specialized path, we need a bigger bias_multiplier_ because | 
 |       // we're doing just 1 big GEMM. | 
 |       ConvPoolOpBase<Context>::template SetBiasMultiplier<T>( | 
 |           N * X_HxW, &bias_multiplier_); | 
 |     } | 
 |     return Run1x1ConvOnDeviceWithOrderNHWC( | 
 |         N, C, X_HxW, M, X_data, filter_data, bias_data, Y_data); | 
 |   } | 
 |  | 
 |   if (bias_data != nullptr) { | 
 |     ConvPoolOpBase<Context>::template SetBiasMultiplier<T>( | 
 |         Y_HxW, &bias_multiplier_); | 
 |   } | 
 |   auto f = [&](Tensor* col_buffer) { | 
 |     col_buffer->Resize(buffer_shape); | 
 |     T* col_buffer_data = col_buffer->template mutable_data<T>(); | 
 |     // Im2Col, followed by gemm. | 
 |     for (const auto image_id : c10::irange(N)) { | 
 |       (void)image_id; // Suppress unused variable warning | 
 |       if (kernel_.size() <= 2) { | 
 |         math::Im2Col<T, Context, StorageOrder::NHWC>( | 
 |             C, | 
 |             X.dim32(1), | 
 |             kernel_.size() == 2 ? X.dim32(2) : 1, | 
 |             kernel_h(), | 
 |             kernel_.size() == 2 ? kernel_w() : 1, | 
 |             dilation_h(), | 
 |             kernel_.size() == 2 ? dilation_w() : 1, | 
 |             pad_t(), | 
 |             kernel_.size() == 2 ? pad_l() : 0, | 
 |             kernel_.size() == 2 ? pad_b() : pad_l(), | 
 |             kernel_.size() == 2 ? pad_r() : 0, | 
 |             stride_h(), | 
 |             kernel_.size() == 2 ? stride_w() : 1, | 
 |             X_data, | 
 |             col_buffer_data, | 
 |             &context_, | 
 |             group_); | 
 |       } else { | 
 |         math::Im2ColNd<T, Context, StorageOrder::NHWC>( | 
 |             kernel_.size(), | 
 |             C * X_HxW, | 
 |             buffer_size, | 
 |             img_shape.data(), | 
 |             buffer_shape.data(), | 
 |             kernel_.data(), | 
 |             stride_.data(), | 
 |             dilation_.data(), | 
 |             pads_.data(), | 
 |             X_data, | 
 |             col_buffer_data, | 
 |             &context_, | 
 |             group_); | 
 |       } | 
 |       // Weight term | 
 |       for (const auto group_id : c10::irange(group_)) { | 
 |         // col_buffer_data in G (H W) (R S C/G) layout | 
 |         // filter_data in G K/G (R S C/G) layout | 
 |         math::GemmEx<T, Context>( | 
 |             CblasNoTrans, | 
 |             CblasTrans, | 
 |             Y_HxW, | 
 |             M / group_, | 
 |             kernel_dim, | 
 |             1, | 
 |             col_buffer_data + group_id * kernel_dim, | 
 |             group_ * kernel_dim, | 
 |             filter_data + group_id * (M / group_) * kernel_dim, | 
 |             kernel_dim, | 
 |             0, | 
 |             Y_data + group_id * (M / group_), | 
 |             M, | 
 |             &context_); | 
 |       } | 
 |       if (bias_data != nullptr) { | 
 |         // Bias term | 
 |         math::Gemm<T, Context>( | 
 |             CblasNoTrans, | 
 |             CblasNoTrans, | 
 |             Y_HxW, | 
 |             M, | 
 |             1, | 
 |             1, | 
 |             bias_multiplier_.template data<T>(), | 
 |             bias_data, | 
 |             1, | 
 |             Y_data, | 
 |             &context_); | 
 |       } | 
 |       X_data += input_offset; | 
 |       Y_data += output_offset; | 
 |     } | 
 |   }; | 
 |   if (FLAGS_caffe2_force_shared_col_buffer || shared_buffer_) { | 
 |     runWithSharedBuffer<Context>(ws_, f); | 
 |   } else { | 
 |     f(&col_buffer_); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename T, class Context> | 
 | bool ConvOp<T, Context>::Run1x1ConvOnDeviceWithOrderNCHW( | 
 |     const int N, | 
 |     const int C, | 
 |     const int HxW, | 
 |     const int M, | 
 |     const T* X, | 
 |     const T* filter, | 
 |     const T* bias, | 
 |     T* Y) { | 
 |   const int G = group_; | 
 |   if (G == 1) { | 
 |     math::GemmStridedBatched<T, Context>( | 
 |         CblasNoTrans, | 
 |         CblasNoTrans, | 
 |         N, | 
 |         M, | 
 |         HxW, | 
 |         C, | 
 |         1.0f, | 
 |         filter, | 
 |         0, | 
 |         X, | 
 |         C * HxW, | 
 |         0.0f, | 
 |         Y, | 
 |         M * HxW, | 
 |         &context_); | 
 |   } else { | 
 |     const int batch_size = N * G; | 
 |     const int D_X = C / G; | 
 |     const int D_Y = M / G; | 
 |     const int X_stride = D_X * HxW; | 
 |     const int W_stride = D_Y * D_X; | 
 |     const int Y_stride = D_Y * HxW; | 
 |     std::vector<const T*> X_ptr(N * G); | 
 |     std::vector<const T*> W_ptr(N * G); | 
 |     std::vector<T*> Y_ptr(N * G); | 
 |     for (const auto i : c10::irange(N)) { | 
 |       for (const auto j : c10::irange(G)) { | 
 |         const int index = i * G + j; | 
 |         X_ptr[index] = X + index * X_stride; | 
 |         W_ptr[index] = filter + j * W_stride; | 
 |         Y_ptr[index] = Y + index * Y_stride; | 
 |       } | 
 |     } | 
 |     math::GemmBatched<T, Context>( | 
 |         CblasNoTrans, | 
 |         CblasNoTrans, | 
 |         batch_size, | 
 |         D_Y, | 
 |         HxW, | 
 |         D_X, | 
 |         1.0f, | 
 |         W_ptr.data(), | 
 |         X_ptr.data(), | 
 |         0.0f, | 
 |         Y_ptr.data(), | 
 |         &context_); | 
 |   } | 
 |   if (bias != nullptr) { | 
 |     const T* bias_multiplier_data = bias_multiplier_.template data<T>(); | 
 |     math::GemmStridedBatched<T, Context>( | 
 |         CblasNoTrans, | 
 |         CblasNoTrans, | 
 |         N, | 
 |         M, | 
 |         HxW, | 
 |         1, | 
 |         1.0f, | 
 |         bias, | 
 |         0, | 
 |         bias_multiplier_data, | 
 |         0, | 
 |         1.0f, | 
 |         Y, | 
 |         M * HxW, | 
 |         &context_); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename T, class Context> | 
 | bool ConvOp<T, Context>::Run1x1ConvOnDeviceWithOrderNHWC( | 
 |     const int N, | 
 |     const int C, | 
 |     const int HxW, | 
 |     const int M, | 
 |     const T* X, | 
 |     const T* filter, | 
 |     const T* bias, | 
 |     T* Y) { | 
 |   const int G = group_; | 
 |   const int kernel_dim = C / G; | 
 |   for (const auto group_id : c10::irange(group_)) { | 
 |     math::GemmEx<T, Context>( | 
 |         CblasNoTrans, | 
 |         CblasTrans, | 
 |         N * HxW, | 
 |         M / group_, | 
 |         kernel_dim, | 
 |         1.0f, | 
 |         X + group_id * kernel_dim, | 
 |         C, | 
 |         filter + group_id * (M / group_) * kernel_dim, | 
 |         kernel_dim, | 
 |         0.0f, | 
 |         Y + group_id * (M / group_), | 
 |         M, | 
 |         &context_); | 
 |   } | 
 |   if (bias != nullptr) { | 
 |     const T* bias_multiplier_data = bias_multiplier_.template data<T>(); | 
 |     math::Gemm<T, Context>( | 
 |         CblasNoTrans, | 
 |         CblasNoTrans, | 
 |         N * HxW, | 
 |         M, | 
 |         1, | 
 |         1.0f, | 
 |         bias_multiplier_data, | 
 |         bias, | 
 |         1.0f, | 
 |         Y, | 
 |         &context_); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename T, class Context> | 
 | bool ConvGradientOp<T, Context>::RunOnDeviceWithOrderNCHW() { | 
 |   auto& X = Input(INPUT); | 
 |   auto& filter = Input(FILTER); | 
 |   auto& dY = Input(OUTPUT_GRAD); | 
 |  | 
 |   const int N = X.dim32(0), C = X.dim32(1); | 
 |  | 
 |   const vector<int> input_dims = this->GetDims(X); | 
 |   const int input_image_size = this->GetDimsSize(X); | 
 |  | 
 |   const vector<int> output_dims = this->GetDims(dY); | 
 |   // The output image size is the spatial size of the output. | 
 |   const int output_image_size = this->GetDimsSize(dY); | 
 |  | 
 |   ConvPoolOpBase<Context>::ComputePads(input_dims); | 
 |   CAFFE_ENFORCE_EQ(X.dim(), filter.dim()); | 
 |   const int M = filter.dim32(0); | 
 |   CAFFE_ENFORCE_EQ(C, filter.dim32(1) * group_); | 
 |  | 
 |   int kernel_dims_size = 1; | 
 |   // NOLINTNEXTLINE(clang-diagnostic-sign-compare) | 
 |   for (const auto i : c10::irange(kernel_.size())) { | 
 |     CAFFE_ENFORCE_EQ(filter.dim32(i + 2), kernel_[i]); | 
 |     kernel_dims_size *= kernel_[i]; | 
 |   } | 
 |  | 
 |   CAFFE_ENFORCE_EQ(M % group_, 0); | 
 |   auto* dfilter = Output(FILTER_GRAD, filter.sizes(), at::dtype<T>()); | 
 |   // The dimension of each kernel | 
 |   const int kernel_dim = C / group_ * kernel_dims_size; | 
 |   // The col buffer is stored in CHW order as well - kernel_dim, and the height | 
 |   // and width. | 
 |   vector<int> img_shape; | 
 |   img_shape.assign(X.sizes().begin() + 1, X.sizes().end()); | 
 |   vector<int> col_buffer_shape; | 
 |   col_buffer_shape.push_back(C / group_ * kernel_dims_size); | 
 |   col_buffer_shape.insert( | 
 |       col_buffer_shape.end(), output_dims.begin(), output_dims.end()); | 
 |   vector<int64_t> col_buffer_shape_64; | 
 |   std::copy( | 
 |       col_buffer_shape.cbegin(), | 
 |       col_buffer_shape.cend(), | 
 |       std::back_inserter(col_buffer_shape_64)); | 
 |   ReinitializeTensor( | 
 |       &col_buffer_, | 
 |       col_buffer_shape_64, | 
 |       at::dtype<T>().device(Context::GetDeviceType())); | 
 |  | 
 |   if (kernel_.size() != 2) { | 
 |     // TODO: SetDeviceTensor accept vector<int64_t> | 
 |     SetDeviceTensor(img_shape, &img_shape_device_); | 
 |     SetDeviceTensor(col_buffer_shape, &col_buffer_shape_device_); | 
 |   } | 
 |  | 
 |   const int col_buffer_size = | 
 |       (C / group_) * kernel_dims_size * output_image_size; | 
 |   const T* Xdata = X.template data<T>(); | 
 |   const T* filter_data = filter.template data<T>(); | 
 |   const T* dYdata = dY.template data<T>(); | 
 |   T* col_buffer_data = col_buffer_.template mutable_data<T>(); | 
 |   T* dfilter_data = dfilter->template mutable_data<T>(); | 
 |  | 
 |   // Pre-setting the gradients to zero. | 
 |   math::Set<T, Context>(dfilter->numel(), 0, dfilter_data, &context_); | 
 |  | 
 |   T* dbias_data = nullptr; | 
 |   if (!no_bias_) { | 
 |     auto* dbias = Output(BIAS_OR_INPUT_GRAD, {M}, at::dtype<T>()); | 
 |     // Removed the check for whether bias_multiplier_ has correct size or not | 
 |     ReinitializeTensor( | 
 |         &bias_multiplier_, | 
 |         vector<int64_t>(1, output_image_size), | 
 |         at::dtype<T>().device(Context::GetDeviceType())); | 
 |     math::Set<T, Context>( | 
 |         output_image_size, | 
 |         static_cast<T>(1), | 
 |         bias_multiplier_.template mutable_data<T>(), | 
 |         &context_); | 
 |     dbias_data = dbias->template mutable_data<T>(); | 
 |     math::Set<T, Context>(dbias->numel(), 0, dbias_data, &context_); | 
 |   } | 
 |  | 
 |   if (N == 0) { | 
 |     if (OutputSize() == 3 || (no_bias_ && (OutputSize() == 2))) { | 
 |       auto* dX = Output( | 
 |           no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD, | 
 |           X.sizes(), | 
 |           at::dtype<T>()); | 
 |       dX->template mutable_data<T>(); | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   // The offset corresponding to a single input image, and a single output | 
 |   // image. | 
 |   const int input_offset = C / group_ * input_image_size; | 
 |   const int output_offset = dY.numel() / dY.dim32(0) / group_; | 
 |   const int filter_offset = filter.numel() / group_; | 
 |   for (const auto image_id : c10::irange(N)) { | 
 |     (void)image_id; // Suppress unused variable warning | 
 |     for (const auto group_id : c10::irange(group_)) { | 
 |       // When we compute the gradient with respect to the filters, we need to do | 
 |       // im2col to allow gemm-type computation. | 
 |       if (kernel_.size() == 2) { | 
 |         math::Im2Col<T, Context, StorageOrder::NCHW>( | 
 |             C / group_, | 
 |             input_dims[0], | 
 |             input_dims[1], | 
 |             kernel_h(), | 
 |             kernel_w(), | 
 |             dilation_h(), | 
 |             dilation_w(), | 
 |             pad_t(), | 
 |             pad_l(), | 
 |             pad_b(), | 
 |             pad_r(), | 
 |             stride_h(), | 
 |             stride_w(), | 
 |             Xdata + group_id * input_offset, | 
 |             col_buffer_data, | 
 |             &context_); | 
 |       } else { | 
 |         math::Im2ColNd<T, Context, StorageOrder::NCHW>( | 
 |             kernel_.size(), | 
 |             input_offset, | 
 |             col_buffer_size, | 
 |             img_shape.data(), | 
 |             col_buffer_shape.data(), | 
 |             kernel_.data(), | 
 |             stride_.data(), | 
 |             dilation_.data(), | 
 |             pads_.data(), | 
 |             Xdata + group_id * input_offset, | 
 |             col_buffer_data, | 
 |             &context_); | 
 |       } | 
 |       // Gradient with respect to filter. | 
 |       math::Gemm<T, Context>( | 
 |           CblasNoTrans, | 
 |           CblasTrans, | 
 |           M / group_, | 
 |           kernel_dim, | 
 |           output_image_size, | 
 |           1, | 
 |           dYdata + group_id * output_offset, | 
 |           col_buffer_data, | 
 |           1, | 
 |           dfilter_data + group_id * filter_offset, | 
 |           &context_); | 
 |     } | 
 |     if (!no_bias_) { | 
 |       // Gradient with respect to bias can be computed independent from group. | 
 |       math::Gemv<T, Context>( | 
 |           CblasNoTrans, | 
 |           M, | 
 |           output_image_size, | 
 |           1, | 
 |           dYdata, | 
 |           bias_multiplier_.template data<T>(), | 
 |           1, | 
 |           dbias_data, | 
 |           &context_); | 
 |     } | 
 |     Xdata += input_offset * group_; | 
 |     dYdata += output_offset * group_; | 
 |   } | 
 |   if (OutputSize() == 3 || (no_bias_ && (OutputSize() == 2))) { | 
 |     // Compute the gradient w.r.t. the input. | 
 |  | 
 |     auto* dX = Output( | 
 |         no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD, X.sizes(), at::dtype<T>()); | 
 |     T* dXdata = dX->template mutable_data<T>(); | 
 |     dYdata = dY.template data<T>(); | 
 |     for (const auto image_id : c10::irange(N)) { | 
 |       (void)image_id; // Suppress unused variable warning | 
 |       for (const auto group_id : c10::irange(group_)) { | 
 |         // Compute gradient into col_buffer. | 
 |         math::Gemm<T, Context>( | 
 |             CblasTrans, | 
 |             CblasNoTrans, | 
 |             kernel_dim, | 
 |             output_image_size, | 
 |             M / group_, | 
 |             1, | 
 |             filter_data + group_id * filter_offset, | 
 |             dYdata, | 
 |             0, | 
 |             col_buffer_data, | 
 |             &context_); | 
 |         if (kernel_.size() == 2) { | 
 |           math::Col2Im<T, Context, StorageOrder::NCHW>( | 
 |               C / group_, | 
 |               input_dims[0], | 
 |               input_dims[1], | 
 |               kernel_h(), | 
 |               kernel_w(), | 
 |               dilation_h(), | 
 |               dilation_w(), | 
 |               pad_t(), | 
 |               pad_l(), | 
 |               pad_b(), | 
 |               pad_r(), | 
 |               stride_h(), | 
 |               stride_w(), | 
 |               col_buffer_data, | 
 |               dXdata, | 
 |               &context_); | 
 |         } else { | 
 |           math::Col2ImNd<T, Context, StorageOrder::NCHW>( | 
 |               kernel_.size(), | 
 |               input_offset, | 
 |               col_buffer_size, | 
 |               img_shape.data(), | 
 |               col_buffer_shape.data(), | 
 |               kernel_.data(), | 
 |               stride_.data(), | 
 |               dilation_.data(), | 
 |               pads_.data(), | 
 |               col_buffer_data, | 
 |               dXdata, | 
 |               &context_); | 
 |         } | 
 |         dXdata += input_offset; | 
 |         dYdata += output_offset; | 
 |       } | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename T, class Context> | 
 | bool ConvGradientOp<T, Context>::RunOnDeviceWithOrderNHWC() { | 
 |   auto& X = Input(INPUT); | 
 |   auto& filter = Input(FILTER); | 
 |   auto& dY = Input(OUTPUT_GRAD); | 
 |  | 
 |   const int N = X.dim32(0), C = X.dim32(X.dim() - 1); | 
 |  | 
 |   const vector<int> input_dims = this->GetDims(X); | 
 |   const int input_image_size = this->GetDimsSize(X); | 
 |  | 
 |   const vector<int> output_dims = this->GetDims(dY); | 
 |   // The output image size is the spatial size of the output. | 
 |   const int output_image_size = this->GetDimsSize(dY); | 
 |  | 
 |   ConvPoolOpBase<Context>::ComputePads(input_dims); | 
 |   CAFFE_ENFORCE_EQ(X.dim(), filter.dim()); | 
 |   const int M = filter.dim32(0); | 
 |   CAFFE_ENFORCE_EQ(C, filter.dim32(filter.dim() - 1) * group_); | 
 |  | 
 |   int kernel_dims_size = 1; | 
 |   for (const auto i : c10::irange(kernel_.size())) { | 
 |     CAFFE_ENFORCE_EQ(filter.dim32(i + 1), kernel_[i]); | 
 |     kernel_dims_size *= kernel_[i]; | 
 |   } | 
 |  | 
 |   CAFFE_ENFORCE_EQ(M % group_, 0); | 
 |   auto* dfilter = Output(FILTER_GRAD, filter.sizes(), at::dtype<T>()); | 
 |   // The dimension of each kernel | 
 |   const int kernel_dim = C / group_ * kernel_dims_size; | 
 |  | 
 |   // The col buffer is stored in HWC order as well - the height and width, and | 
 |   // kernel_dim. | 
 |   vector<int> img_shape(X.sizes().cbegin() + 1, X.sizes().cend()); | 
 |   vector<int> col_buffer_shape(output_dims.size() + 1); | 
 |   std::copy(output_dims.cbegin(), output_dims.cend(), col_buffer_shape.begin()); | 
 |   col_buffer_shape.back() = C * kernel_dims_size; | 
 |   vector<int64_t> col_buffer_shape_64; | 
 |   std::copy( | 
 |       col_buffer_shape.cbegin(), | 
 |       col_buffer_shape.cend(), | 
 |       std::back_inserter(col_buffer_shape_64)); | 
 |   ReinitializeTensor( | 
 |       &col_buffer_, | 
 |       col_buffer_shape_64, | 
 |       at::dtype<T>().device(Context::GetDeviceType())); | 
 |  | 
 |   if (kernel_.size() != 2) { | 
 |     SetDeviceTensor(img_shape, &img_shape_device_); | 
 |     SetDeviceTensor(col_buffer_shape, &col_buffer_shape_device_); | 
 |   } | 
 |  | 
 |   const int col_buffer_size = C * kernel_dims_size * output_image_size; | 
 |   const T* Xdata = X.template data<T>(); | 
 |   const T* const filter_data = filter.template data<T>(); | 
 |   const T* const dYdata = dY.template data<T>(); | 
 |   T* col_buffer_data = col_buffer_.template mutable_data<T>(); | 
 |   T* dfilter_data = dfilter->template mutable_data<T>(); | 
 |  | 
 |   // Pre-setting the gradients to zero. | 
 |   math::Set<T, Context>(dfilter->numel(), 0, dfilter_data, &context_); | 
 |  | 
 |   T* dbias_data = nullptr; | 
 |   if (!no_bias_) { | 
 |     auto* dbias = Output(BIAS_OR_INPUT_GRAD, {M}, at::dtype<T>()); | 
 |     dbias_data = dbias->template mutable_data<T>(); | 
 |     math::Set<T, Context>(dbias->numel(), 0, dbias_data, &context_); | 
 |     // Removed the check for whether bias_multiplier_ has correct size or not | 
 |     ReinitializeTensor( | 
 |         &bias_multiplier_, | 
 |         vector<int64_t>(1, output_image_size), | 
 |         at::dtype<T>().device(Context::GetDeviceType())); | 
 |     math::Set<T, Context>( | 
 |         output_image_size, | 
 |         static_cast<T>(1), | 
 |         bias_multiplier_.template mutable_data<T>(), | 
 |         &context_); | 
 |   } | 
 |  | 
 |   if (N == 0) { | 
 |     if (OutputSize() == 3 || (no_bias_ && (OutputSize() == 2))) { | 
 |       auto* dX = Output( | 
 |           no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD, | 
 |           X.sizes(), | 
 |           at::dtype<T>()); | 
 |       dX->template mutable_data<T>(); | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   // The offset corresponding to a single input image, and a single output | 
 |   // image. | 
 |   const size_t input_offset = C * input_image_size; | 
 |   const size_t output_offset = dY.numel() / dY.dim32(0); | 
 |   for (const auto image_id : c10::irange(N)) { | 
 |     // When we compute the gradient with respect to the filters, we need to do | 
 |     // im2col to allow gemm-type computation. | 
 |     if (kernel_.size() <= 2) { | 
 |       math::Im2Col<T, Context, StorageOrder::NHWC>( | 
 |           C, | 
 |           X.size(1), | 
 |           kernel_.size() == 2 ? X.dim32(2) : 1, | 
 |           kernel_h(), | 
 |           kernel_.size() == 2 ? kernel_w() : 1, | 
 |           dilation_h(), | 
 |           kernel_.size() == 2 ? dilation_w() : 1, | 
 |           pad_t(), | 
 |           kernel_.size() == 2 ? pad_l() : 0, | 
 |           kernel_.size() == 2 ? pad_b() : pad_l(), | 
 |           kernel_.size() == 2 ? pad_r() : 0, | 
 |           stride_h(), | 
 |           kernel_.size() == 2 ? stride_w() : 1, | 
 |           Xdata, | 
 |           col_buffer_data, | 
 |           &context_, | 
 |           group_); | 
 |     } else { | 
 |       math::Im2ColNd<T, Context, StorageOrder::NHWC>( | 
 |           kernel_.size(), | 
 |           C * input_image_size, | 
 |           col_buffer_size, | 
 |           img_shape.data(), | 
 |           col_buffer_shape.data(), | 
 |           kernel_.data(), | 
 |           stride_.data(), | 
 |           dilation_.data(), | 
 |           pads_.data(), | 
 |           Xdata, | 
 |           col_buffer_data, | 
 |           &context_, | 
 |           group_); | 
 |     } | 
 |     // Gradient with respect to filter. | 
 |     for (const auto group_id : c10::irange(group_)) { | 
 |       math::GemmEx<T, Context>( | 
 |           CblasTrans, | 
 |           CblasNoTrans, | 
 |           M / group_, | 
 |           kernel_dim, | 
 |           output_image_size, | 
 |           1, | 
 |           dYdata + output_offset * image_id + group_id * (M / group_), | 
 |           M, | 
 |           col_buffer_data + group_id * kernel_dim, | 
 |           group_ * kernel_dim, | 
 |           1, | 
 |           dfilter_data + group_id * (M / group_) * kernel_dim, | 
 |           kernel_dim, | 
 |           &context_); | 
 |     } | 
 |     if (!no_bias_) { | 
 |       // Gradient with respect to bias | 
 |       math::Gemv<T, Context>( | 
 |           CblasTrans, | 
 |           output_image_size, | 
 |           M, | 
 |           1, | 
 |           dYdata + output_offset * image_id, | 
 |           bias_multiplier_.template data<T>(), | 
 |           1, | 
 |           dbias_data, | 
 |           &context_); | 
 |     } | 
 |     Xdata += input_offset; | 
 |   } // for each image | 
 |  | 
 |   if (OutputSize() == 3 || (no_bias_ && (OutputSize() == 2))) { | 
 |     // Compute the gradient w.r.t. the input. | 
 |  | 
 |     auto* dX = Output( | 
 |         no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD, X.sizes(), at::dtype<T>()); | 
 |     T* dXdata = dX->template mutable_data<T>(); | 
 |     for (const auto image_id : c10::irange(N)) { | 
 |       // Compute gradient into col_buffer. | 
 |       for (const auto group_id : c10::irange(group_)) { | 
 |         math::GemmEx<T, Context>( | 
 |             CblasNoTrans, | 
 |             CblasNoTrans, | 
 |             output_image_size, | 
 |             kernel_dim, | 
 |             M / group_, | 
 |             1, | 
 |             dYdata + output_offset * image_id + group_id * (M / group_), | 
 |             M, | 
 |             filter_data + group_id * (M / group_) * kernel_dim, | 
 |             kernel_dim, | 
 |             0, | 
 |             col_buffer_data + group_id * kernel_dim, | 
 |             group_ * kernel_dim, | 
 |             &context_); | 
 |       } | 
 |       if (kernel_.size() <= 2) { | 
 |         math::Col2Im<T, Context, StorageOrder::NHWC>( | 
 |             C, | 
 |             X.size(1), | 
 |             kernel_.size() == 2 ? X.dim32(2) : 1, | 
 |             kernel_h(), | 
 |             kernel_.size() == 2 ? kernel_w() : 1, | 
 |             dilation_h(), | 
 |             kernel_.size() == 2 ? dilation_w() : 1, | 
 |             pad_t(), | 
 |             kernel_.size() == 2 ? pad_l() : 0, | 
 |             kernel_.size() == 2 ? pad_b() : pad_l(), | 
 |             kernel_.size() == 2 ? pad_r() : 0, | 
 |             stride_h(), | 
 |             kernel_.size() == 2 ? stride_w() : 1, | 
 |             col_buffer_data, | 
 |             dXdata, | 
 |             &context_, | 
 |             group_); | 
 |       } else { | 
 |         math::Col2ImNd<T, Context, StorageOrder::NHWC>( | 
 |             kernel_.size(), | 
 |             C * input_image_size, | 
 |             col_buffer_size, | 
 |             img_shape.data(), | 
 |             col_buffer_shape.data(), | 
 |             kernel_.data(), | 
 |             stride_.data(), | 
 |             dilation_.data(), | 
 |             pads_.data(), | 
 |             col_buffer_data, | 
 |             dXdata, | 
 |             &context_, | 
 |             group_); | 
 |       } | 
 |       dXdata += input_offset; | 
 |     } // for each image | 
 |   } | 
 |   return true; | 
 | } | 
 | } // namespace caffe2 | 
 |  | 
 | #endif // CAFFE2_OPERATORS_CONV_OP_IMPL_H_ |