| #include <benchmark/benchmark.h> |
| #include <torch/csrc/jit/tensorexpr/ir_simplifier.h> |
| #include <torch/csrc/jit/tensorexpr/llvm_codegen.h> |
| #include <torch/csrc/jit/tensorexpr/loopnest.h> |
| #include <torch/csrc/jit/tensorexpr/tensor.h> |
| #include <torch/torch.h> |
| |
| using namespace torch::jit::tensorexpr; |
| |
| namespace { |
| |
| class ConcatBench : public benchmark::Fixture { |
| public: |
| void init(const std::vector<std::vector<int>> input_sizes, int concat_dim) { |
| input_sizes_ = std::move(input_sizes); |
| concat_dim_ = concat_dim; |
| inputs_.resize(input_sizes_.size()); |
| for (size_t i = 0; i < input_sizes_.size(); ++i) { |
| inputs_[i] = torch::ones({input_sizes_[i][0], input_sizes_[i][1]}); |
| } |
| output_size_.resize(input_sizes_.front().size()); |
| for (size_t i = 0; i < output_size_.size(); ++i) { |
| if (i == static_cast<size_t>(concat_dim_)) { |
| output_size_[i] = 0; |
| for (size_t j = 0; j < input_sizes_.size(); ++j) { |
| output_size_[i] += input_sizes_[j][i]; |
| } |
| } else { |
| output_size_[i] = input_sizes_.front()[i]; |
| } |
| } |
| ref_ = at::cat(inputs_, concat_dim_); |
| output_ = at::empty_like(ref_); |
| } |
| |
| void TearDown(benchmark::State& state) override { |
| TORCH_CHECK(at::allclose(ref_, output_)); |
| state.counters["GB/s"] = benchmark::Counter( |
| uint64_t(state.iterations()) * 2 * output_.nbytes(), |
| benchmark::Counter::kIsRate); |
| } |
| |
| void runATen(benchmark::State& state) { |
| for (auto _ : state) { |
| output_ = at::cat(inputs_, concat_dim_); |
| } |
| } |
| |
| void runNNC(benchmark::State& state) { |
| KernelScope ks; |
| |
| size_t num_inputs = inputs_.size(); |
| size_t num_dims = 2; |
| |
| std::vector<Placeholder> inputs; |
| for (size_t i = 0; i < num_inputs; ++i) { |
| inputs.emplace_back(Placeholder( |
| "input" + std::to_string(i), |
| kFloat, |
| {input_sizes_[i][0], input_sizes_[i][1]})); |
| } |
| |
| Tensor* output = Compute( |
| "aten_cat", |
| {{output_size_[0], "M"}, {output_size_[1], "N"}}, |
| [&](const VarHandle& m, const VarHandle& n) { |
| int d = 0; |
| std::vector<int> cumulative_concat_dim_sizes(num_inputs); |
| for (size_t i = 0; i < num_inputs; ++i) { |
| cumulative_concat_dim_sizes[i] = d; |
| d += input_sizes_[i][concat_dim_]; |
| } |
| auto load = |
| inputs.back().load(m, n - cumulative_concat_dim_sizes.back()); |
| for (size_t i = num_inputs - 1; i > 0; --i) { |
| load = ifThenElse( |
| CompareSelect::make( |
| n, IntImm::make(cumulative_concat_dim_sizes[i]), kLT), |
| inputs[i - 1].load(m, n - cumulative_concat_dim_sizes[i - 1]), |
| load); |
| } |
| return load; |
| }); |
| LoopNest nest({output}); |
| nest.prepareForCodegen(); |
| Stmt* s = IRSimplifier::simplify(nest.root_stmt()); |
| std::vector<CodeGen::BufferArg> buf_args(inputs.begin(), inputs.end()); |
| buf_args.push_back(output); |
| LLVMCodeGen cg(s, buf_args); |
| |
| std::vector<CodeGen::CallArg> call_args; |
| for (auto _ : state) { |
| output_ = at::empty_like(ref_); |
| call_args.clear(); |
| for (const auto& inp : inputs_) { |
| call_args.push_back(inp.data_ptr<float>()); |
| } |
| call_args.push_back(output_.data_ptr<float>()); |
| cg.call(call_args); |
| } |
| } |
| |
| void runNNCLoop(benchmark::State& state) { |
| KernelScope ks; |
| |
| size_t num_inputs = inputs_.size(); |
| size_t num_dims = 2; |
| |
| TORCH_INTERNAL_ASSERT(concat_dim_ == 1); |
| |
| auto output_buf = new Buf( |
| new Var("aten_cat", kHandle), |
| {new IntImm(output_size_[0]), new IntImm(output_size_[1])}, |
| kFloat); |
| |
| std::vector<Placeholder> inputs; |
| std::vector<Stmt*> for_stmts(num_inputs); |
| int cumulative_input_sizes = 0; |
| for (size_t i = 0; i < num_inputs; ++i) { |
| inputs.emplace_back(Placeholder( |
| "input" + std::to_string(i), |
| kFloat, |
| {input_sizes_[i][0], input_sizes_[i][1]})); |
| std::vector<Var*> for_vars(num_inputs); |
| for (size_t d = 0; d < num_dims; ++d) { |
| for_vars[d] = |
| new Var("i" + std::to_string(i) + "_" + std::to_string(d), kInt); |
| } |
| auto store = new Store( |
| output_buf, |
| {for_vars[0], |
| new Add(for_vars[1], new IntImm(cumulative_input_sizes))}, |
| new Load(inputs[i].data(), {for_vars[0], for_vars[1]}, new IntImm(1)), |
| new IntImm(1)); |
| auto for_st = new For( |
| for_vars[0], |
| new IntImm(0), |
| new IntImm(input_sizes_[i][0]), |
| new For( |
| for_vars[1], |
| new IntImm(0), |
| new IntImm(input_sizes_[i][1]), |
| store)); |
| for_stmts[i] = for_st; |
| cumulative_input_sizes += input_sizes_[i][1]; |
| } |
| auto output = new Tensor(output_buf, new Block(for_stmts)); |
| |
| LoopNest nest({output}); |
| nest.prepareForCodegen(); |
| nest.vectorizeInnerLoops(); |
| Stmt* s = IRSimplifier::simplify(nest.root_stmt()); |
| std::vector<CodeGen::BufferArg> buf_args(inputs.begin(), inputs.end()); |
| buf_args.push_back(output); |
| LLVMCodeGen cg(s, buf_args); |
| |
| std::vector<CodeGen::CallArg> call_args; |
| for (auto _ : state) { |
| output_ = at::empty_like(ref_); |
| call_args.clear(); |
| for (const auto& inp : inputs_) { |
| call_args.push_back(inp.data_ptr<float>()); |
| } |
| call_args.push_back(output_.data_ptr<float>()); |
| cg.call(call_args); |
| } |
| } |
| |
| std::vector<std::vector<int>> input_sizes_; |
| int concat_dim_; |
| std::vector<at::Tensor> inputs_; |
| std::vector<int> output_size_; |
| at::Tensor output_; |
| at::Tensor ref_; |
| }; |
| |
| class Concat2D2Input : public ConcatBench { |
| public: |
| void SetUp(const benchmark::State& state) override { |
| init( |
| {{state.range(0), state.range(1)}, {state.range(2), state.range(3)}}, |
| state.range(4)); |
| } |
| }; |
| |
| } // namespace |
| |
| BENCHMARK_DEFINE_F(Concat2D2Input, ATen)(benchmark::State& state) { |
| runATen(state); |
| } |
| |
| BENCHMARK_DEFINE_F(Concat2D2Input, NNC)(benchmark::State& state) { |
| runNNC(state); |
| } |
| |
| BENCHMARK_DEFINE_F(Concat2D2Input, NNCLoop)(benchmark::State& state) { |
| runNNCLoop(state); |
| } |
| |
| BENCHMARK_REGISTER_F(Concat2D2Input, ATen) |
| ->Args({1, 160, 1, 14, 1}) |
| ->Args({1, 580, 1, 174, 1}) |
| ->Args({20, 160, 20, 14, 1}) |
| ->Args({20, 580, 20, 174, 1}) |
| ->Args({8, 512, 8, 512, 1}); |
| |
| BENCHMARK_REGISTER_F(Concat2D2Input, NNC) |
| ->Args({1, 160, 1, 14, 1}) |
| ->Args({1, 580, 1, 174, 1}) |
| ->Args({20, 160, 20, 14, 1}) |
| ->Args({20, 580, 20, 174, 1}) |
| ->Args({8, 512, 8, 512, 1}); |
| |
| BENCHMARK_REGISTER_F(Concat2D2Input, NNCLoop) |
| ->Args({1, 160, 1, 14, 1}) |
| ->Args({1, 580, 1, 174, 1}) |
| ->Args({20, 160, 20, 14, 1}) |
| ->Args({20, 580, 20, 174, 1}) |
| ->Args({8, 512, 8, 512, 1}); |
| |
| namespace { |
| |
| class Concat2D3Input : public ConcatBench { |
| public: |
| void SetUp(const benchmark::State& state) override { |
| init( |
| {{state.range(0), state.range(1)}, |
| {state.range(2), state.range(3)}, |
| {state.range(4), state.range(5)}}, |
| state.range(6)); |
| } |
| }; |
| |
| } // namespace |
| |
| BENCHMARK_DEFINE_F(Concat2D3Input, ATen)(benchmark::State& state) { |
| runATen(state); |
| } |
| |
| BENCHMARK_DEFINE_F(Concat2D3Input, NNC)(benchmark::State& state) { |
| runNNC(state); |
| } |
| |
| BENCHMARK_DEFINE_F(Concat2D3Input, NNCLoop)(benchmark::State& state) { |
| runNNCLoop(state); |
| } |
| |
| BENCHMARK_REGISTER_F(Concat2D3Input, ATen)->Args({8, 512, 8, 512, 8, 512, 1}); |
| |
| BENCHMARK_REGISTER_F(Concat2D3Input, NNC)->Args({8, 512, 8, 512, 8, 512, 1}); |
| |
| BENCHMARK_REGISTER_F(Concat2D3Input, NNCLoop) |
| ->Args({8, 512, 8, 512, 8, 512, 1}); |
| |
| namespace { |
| |
| class Concat2D7Input : public ConcatBench { |
| public: |
| void SetUp(const benchmark::State& state) override { |
| init( |
| {{state.range(0), state.range(1)}, |
| {state.range(2), state.range(3)}, |
| {state.range(4), state.range(5)}, |
| {state.range(6), state.range(7)}, |
| {state.range(8), state.range(9)}, |
| {state.range(10), state.range(11)}, |
| {state.range(12), state.range(13)}}, |
| state.range(14)); |
| } |
| }; |
| |
| } // namespace |
| |
| BENCHMARK_DEFINE_F(Concat2D7Input, ATen)(benchmark::State& state) { |
| runATen(state); |
| } |
| |
| BENCHMARK_DEFINE_F(Concat2D7Input, NNC)(benchmark::State& state) { |
| runNNC(state); |
| } |
| |
| BENCHMARK_DEFINE_F(Concat2D7Input, NNCLoop)(benchmark::State& state) { |
| runNNCLoop(state); |
| } |
| |
| BENCHMARK_REGISTER_F(Concat2D7Input, ATen) |
| ->Args({8, 128, 8, 256, 8, 384, 8, 512, 8, 512, 8, 512, 8, 512, 1}); |
| |
| BENCHMARK_REGISTER_F(Concat2D7Input, NNC) |
| ->Args({8, 128, 8, 256, 8, 384, 8, 512, 8, 512, 8, 512, 8, 512, 1}); |
| |
| BENCHMARK_REGISTER_F(Concat2D7Input, NNCLoop) |
| ->Args({8, 128, 8, 256, 8, 384, 8, 512, 8, 512, 8, 512, 8, 512, 1}); |