blob: 1b3bdac573bfd263a09f11944718561e2f154780 [file] [log] [blame]
#include <benchmark/benchmark.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/llvm_codegen.h>
#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
#include <torch/torch.h>
using namespace torch::jit::tensorexpr;
namespace {
class ConcatBench : public benchmark::Fixture {
public:
void init(const std::vector<std::vector<int>> input_sizes, int concat_dim) {
input_sizes_ = std::move(input_sizes);
concat_dim_ = concat_dim;
inputs_.resize(input_sizes_.size());
for (size_t i = 0; i < input_sizes_.size(); ++i) {
inputs_[i] = torch::ones({input_sizes_[i][0], input_sizes_[i][1]});
}
output_size_.resize(input_sizes_.front().size());
for (size_t i = 0; i < output_size_.size(); ++i) {
if (i == static_cast<size_t>(concat_dim_)) {
output_size_[i] = 0;
for (size_t j = 0; j < input_sizes_.size(); ++j) {
output_size_[i] += input_sizes_[j][i];
}
} else {
output_size_[i] = input_sizes_.front()[i];
}
}
ref_ = at::cat(inputs_, concat_dim_);
output_ = at::empty_like(ref_);
}
void TearDown(benchmark::State& state) override {
TORCH_CHECK(at::allclose(ref_, output_));
state.counters["GB/s"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 * output_.nbytes(),
benchmark::Counter::kIsRate);
}
void runATen(benchmark::State& state) {
for (auto _ : state) {
output_ = at::cat(inputs_, concat_dim_);
}
}
void runNNC(benchmark::State& state) {
KernelScope ks;
size_t num_inputs = inputs_.size();
size_t num_dims = 2;
std::vector<Placeholder> inputs;
for (size_t i = 0; i < num_inputs; ++i) {
inputs.emplace_back(Placeholder(
"input" + std::to_string(i),
kFloat,
{input_sizes_[i][0], input_sizes_[i][1]}));
}
Tensor* output = Compute(
"aten_cat",
{{output_size_[0], "M"}, {output_size_[1], "N"}},
[&](const VarHandle& m, const VarHandle& n) {
int d = 0;
std::vector<int> cumulative_concat_dim_sizes(num_inputs);
for (size_t i = 0; i < num_inputs; ++i) {
cumulative_concat_dim_sizes[i] = d;
d += input_sizes_[i][concat_dim_];
}
auto load =
inputs.back().load(m, n - cumulative_concat_dim_sizes.back());
for (size_t i = num_inputs - 1; i > 0; --i) {
load = ifThenElse(
CompareSelect::make(
n, IntImm::make(cumulative_concat_dim_sizes[i]), kLT),
inputs[i - 1].load(m, n - cumulative_concat_dim_sizes[i - 1]),
load);
}
return load;
});
LoopNest nest({output});
nest.prepareForCodegen();
Stmt* s = IRSimplifier::simplify(nest.root_stmt());
std::vector<CodeGen::BufferArg> buf_args(inputs.begin(), inputs.end());
buf_args.push_back(output);
LLVMCodeGen cg(s, buf_args);
std::vector<CodeGen::CallArg> call_args;
for (auto _ : state) {
output_ = at::empty_like(ref_);
call_args.clear();
for (const auto& inp : inputs_) {
call_args.push_back(inp.data_ptr<float>());
}
call_args.push_back(output_.data_ptr<float>());
cg.call(call_args);
}
}
void runNNCLoop(benchmark::State& state) {
KernelScope ks;
size_t num_inputs = inputs_.size();
size_t num_dims = 2;
TORCH_INTERNAL_ASSERT(concat_dim_ == 1);
auto output_buf = new Buf(
new Var("aten_cat", kHandle),
{new IntImm(output_size_[0]), new IntImm(output_size_[1])},
kFloat);
std::vector<Placeholder> inputs;
std::vector<Stmt*> for_stmts(num_inputs);
int cumulative_input_sizes = 0;
for (size_t i = 0; i < num_inputs; ++i) {
inputs.emplace_back(Placeholder(
"input" + std::to_string(i),
kFloat,
{input_sizes_[i][0], input_sizes_[i][1]}));
std::vector<Var*> for_vars(num_inputs);
for (size_t d = 0; d < num_dims; ++d) {
for_vars[d] =
new Var("i" + std::to_string(i) + "_" + std::to_string(d), kInt);
}
auto store = new Store(
output_buf,
{for_vars[0],
new Add(for_vars[1], new IntImm(cumulative_input_sizes))},
new Load(inputs[i].data(), {for_vars[0], for_vars[1]}, new IntImm(1)),
new IntImm(1));
auto for_st = new For(
for_vars[0],
new IntImm(0),
new IntImm(input_sizes_[i][0]),
new For(
for_vars[1],
new IntImm(0),
new IntImm(input_sizes_[i][1]),
store));
for_stmts[i] = for_st;
cumulative_input_sizes += input_sizes_[i][1];
}
auto output = new Tensor(output_buf, new Block(for_stmts));
LoopNest nest({output});
nest.prepareForCodegen();
nest.vectorizeInnerLoops();
Stmt* s = IRSimplifier::simplify(nest.root_stmt());
std::vector<CodeGen::BufferArg> buf_args(inputs.begin(), inputs.end());
buf_args.push_back(output);
LLVMCodeGen cg(s, buf_args);
std::vector<CodeGen::CallArg> call_args;
for (auto _ : state) {
output_ = at::empty_like(ref_);
call_args.clear();
for (const auto& inp : inputs_) {
call_args.push_back(inp.data_ptr<float>());
}
call_args.push_back(output_.data_ptr<float>());
cg.call(call_args);
}
}
std::vector<std::vector<int>> input_sizes_;
int concat_dim_;
std::vector<at::Tensor> inputs_;
std::vector<int> output_size_;
at::Tensor output_;
at::Tensor ref_;
};
class Concat2D2Input : public ConcatBench {
public:
void SetUp(const benchmark::State& state) override {
init(
{{state.range(0), state.range(1)}, {state.range(2), state.range(3)}},
state.range(4));
}
};
} // namespace
BENCHMARK_DEFINE_F(Concat2D2Input, ATen)(benchmark::State& state) {
runATen(state);
}
BENCHMARK_DEFINE_F(Concat2D2Input, NNC)(benchmark::State& state) {
runNNC(state);
}
BENCHMARK_DEFINE_F(Concat2D2Input, NNCLoop)(benchmark::State& state) {
runNNCLoop(state);
}
BENCHMARK_REGISTER_F(Concat2D2Input, ATen)
->Args({1, 160, 1, 14, 1})
->Args({1, 580, 1, 174, 1})
->Args({20, 160, 20, 14, 1})
->Args({20, 580, 20, 174, 1})
->Args({8, 512, 8, 512, 1});
BENCHMARK_REGISTER_F(Concat2D2Input, NNC)
->Args({1, 160, 1, 14, 1})
->Args({1, 580, 1, 174, 1})
->Args({20, 160, 20, 14, 1})
->Args({20, 580, 20, 174, 1})
->Args({8, 512, 8, 512, 1});
BENCHMARK_REGISTER_F(Concat2D2Input, NNCLoop)
->Args({1, 160, 1, 14, 1})
->Args({1, 580, 1, 174, 1})
->Args({20, 160, 20, 14, 1})
->Args({20, 580, 20, 174, 1})
->Args({8, 512, 8, 512, 1});
namespace {
class Concat2D3Input : public ConcatBench {
public:
void SetUp(const benchmark::State& state) override {
init(
{{state.range(0), state.range(1)},
{state.range(2), state.range(3)},
{state.range(4), state.range(5)}},
state.range(6));
}
};
} // namespace
BENCHMARK_DEFINE_F(Concat2D3Input, ATen)(benchmark::State& state) {
runATen(state);
}
BENCHMARK_DEFINE_F(Concat2D3Input, NNC)(benchmark::State& state) {
runNNC(state);
}
BENCHMARK_DEFINE_F(Concat2D3Input, NNCLoop)(benchmark::State& state) {
runNNCLoop(state);
}
BENCHMARK_REGISTER_F(Concat2D3Input, ATen)->Args({8, 512, 8, 512, 8, 512, 1});
BENCHMARK_REGISTER_F(Concat2D3Input, NNC)->Args({8, 512, 8, 512, 8, 512, 1});
BENCHMARK_REGISTER_F(Concat2D3Input, NNCLoop)
->Args({8, 512, 8, 512, 8, 512, 1});
namespace {
class Concat2D7Input : public ConcatBench {
public:
void SetUp(const benchmark::State& state) override {
init(
{{state.range(0), state.range(1)},
{state.range(2), state.range(3)},
{state.range(4), state.range(5)},
{state.range(6), state.range(7)},
{state.range(8), state.range(9)},
{state.range(10), state.range(11)},
{state.range(12), state.range(13)}},
state.range(14));
}
};
} // namespace
BENCHMARK_DEFINE_F(Concat2D7Input, ATen)(benchmark::State& state) {
runATen(state);
}
BENCHMARK_DEFINE_F(Concat2D7Input, NNC)(benchmark::State& state) {
runNNC(state);
}
BENCHMARK_DEFINE_F(Concat2D7Input, NNCLoop)(benchmark::State& state) {
runNNCLoop(state);
}
BENCHMARK_REGISTER_F(Concat2D7Input, ATen)
->Args({8, 128, 8, 256, 8, 384, 8, 512, 8, 512, 8, 512, 8, 512, 1});
BENCHMARK_REGISTER_F(Concat2D7Input, NNC)
->Args({8, 128, 8, 256, 8, 384, 8, 512, 8, 512, 8, 512, 8, 512, 1});
BENCHMARK_REGISTER_F(Concat2D7Input, NNCLoop)
->Args({8, 128, 8, 256, 8, 384, 8, 512, 8, 512, 8, 512, 8, 512, 1});