blob: 0dded01cc6ed8613c75e8f2a2c49d250a25bee45 [file] [log] [blame]
import dataclasses
import typing
import unittest
from tools.autograd import gen_autograd_functions
from tools.autograd import load_derivatives
import tools.codegen.model
class TestCreateDerivative(unittest.TestCase):
def test_named_grads(self) -> None:
schema = tools.codegen.model.FunctionSchema.parse(
'func(Tensor a, Tensor b) -> (Tensor x, Tensor y)')
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION,
func=schema)
derivative = load_derivatives.create_derivative(
native_function,
formula='func_backward(grad_x, grad_y)',
var_names=(),
available_named_gradients=['grad_x', 'grad_y'])
self.assertSetEqual(derivative.named_gradients, {'grad_x', 'grad_y'})
def test_non_differentiable_output(self) -> None:
specification = 'func(Tensor a, Tensor b) -> (Tensor x, bool y, Tensor z)'
schema = tools.codegen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION,
func=schema)
differentiability_info = load_derivatives.create_differentiability_info(
defn={'name': specification,
'a': 'grads[0]',
'b': 'grads[2]',
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
)
self.assertSequenceEqual(differentiability_info.available_named_gradients,
# grad_y is not present because y is a
# bool and thus not differentiable.
['grad_x', 'grad_z'])
def test_indexed_grads(self) -> None:
schema = tools.codegen.model.FunctionSchema.parse(
'func(Tensor a, Tensor b) -> (Tensor x, Tensor y)')
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION,
func=schema)
derivative = load_derivatives.create_derivative(
native_function,
formula='func_backward(grads[0], grads[1])',
var_names=(),
available_named_gradients=['grad_x', 'grad_y'])
self.assertSetEqual(derivative.named_gradients, set())
def test_named_grads_and_indexed_grads(self) -> None:
specification = 'func(Tensor a, Tensor b) -> (Tensor x, Tensor y)'
schema = tools.codegen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION,
func=schema)
with self.assertRaisesRegex(RuntimeError,
'illegally mixes use of "grad_RETURN_NAME"'):
load_derivatives.create_differentiability_info(
defn={'name': specification,
# Uh-oh, the derivatives reference gradients by
# name and by index.
'a': 'grad_x',
'b': 'grads[1]',
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
)
class TestGenAutogradFunctions(unittest.TestCase):
def test_non_differentiable_output_invalid_type(self) -> None:
specification = 'func(Tensor a, Tensor b) -> (Tensor x, bool y, Tensor z)'
schema = tools.codegen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION,
func=schema)
differentiability_info = load_derivatives.create_differentiability_info(
defn={'name': specification,
'a': 'grad_x',
'b': 'grad_z',
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
)
definition = gen_autograd_functions.process_function(
differentiability_info,
gen_autograd_functions.FUNCTION_DEFINITION)
# grad_z should map to grads[1], not grads[2] because output 1
# (y) is not differentiable.
assert 'grad_z = grads[2]' not in definition
assert 'grad_z = grads[1]' in definition
def test_non_differentiable_output_output_differentiability(self) -> None:
specification = 'func(Tensor a, Tensor b) -> (Tensor x, Tensor y, Tensor z)'
schema = tools.codegen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION,
func=schema)
differentiability_info = load_derivatives.create_differentiability_info(
defn={'name': specification,
'a': 'grad_x',
'b': 'grad_z',
'output_differentiability': [True, False, True],
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
)
definition = gen_autograd_functions.process_function(
differentiability_info,
gen_autograd_functions.FUNCTION_DEFINITION)
# grad_z should map to grads[1], not grads[2] because output 1
# (y) is not differentiable.
assert 'grad_z = grads[2]' not in definition
assert 'grad_z = grads[1]' in definition
# Represents the most basic NativeFunction. Use dataclasses.replace()
# to edit for use.
DEFAULT_NATIVE_FUNCTION, _ = tools.codegen.model.NativeFunction.from_yaml(
{'func': 'func() -> bool'},
loc=tools.codegen.model.Location(__file__, 1))
if __name__ == '__main__':
unittest.main()