| import pathlib |
| import argparse |
| import os |
| import re |
| import yaml |
| from collections import namedtuple, Counter |
| from typing import List, Dict, Union, Sequence, Optional, Callable, Iterable, Iterator, Tuple, Type |
| from tools.codegen.dest.lazy_ir import LazyIR, TSLazyIR |
| from tools.codegen.gen import get_grouped_native_functions, parse_native_yaml |
| from tools.codegen.model import (FunctionSchema, |
| NativeFunction, NativeFunctionsGroup, OperatorName) |
| from tools.codegen.selective_build.selector import SelectiveBuilder |
| from tools.codegen.utils import concatMap, YamlLoader, FileManager |
| import tools.codegen.dest as dest |
| from .gen_backend_stubs import (parse_backend_yaml, error_on_missing_kernels, |
| gen_dispatchkey_nativefunc_headers, |
| gen_dispatcher_registrations) |
| |
| # Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key. |
| # Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping, full_codegen) |
| ParsedExternalYaml = namedtuple('ParsedExternalYaml', [ |
| 'backend_key', 'autograd_key', 'cpp_namespace', 'backend_indices', 'full_codegen']) |
| |
| |
| def parse_full_codegen_ops( |
| backend_yaml_path: str, |
| grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]], |
| ) -> List[OperatorName]: |
| |
| native_functions_map: Dict[OperatorName, NativeFunction] = { |
| f.func.name: f |
| for f in concatMap( |
| lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()), grouped_native_functions |
| ) |
| } |
| |
| with open(backend_yaml_path, 'r') as f: |
| yaml_values = yaml.load(f, Loader=YamlLoader) |
| assert isinstance(yaml_values, dict) |
| |
| full_codegen = yaml_values.pop('full_codegen', []) |
| assert isinstance(full_codegen, list), f'expected "full_codegen" to be a list, but got: {full_codegen}' |
| full_codegen = [OperatorName.parse(name) for name in full_codegen] |
| |
| return full_codegen |
| |
| def validate_shape_inference_header(shape_inference_hdr: str, expected_shape_infr_decls: List[str]) -> None: |
| try: |
| with open(shape_inference_hdr, 'r') as f: |
| shape_infr_decls = f.read() |
| shape_infr_decl_lines = set(shape_infr_decls.split("\n")) |
| except IOError: |
| raise AssertionError(f'Unable to read from the specified shape_inference_hdr file: {shape_inference_hdr}') |
| |
| shape_infr_regex = r'compute_shape_(\w+)' |
| actual_shape_infr_name_counts = Counter(re.findall(shape_infr_regex, shape_infr_decls)) |
| # TODO(whc) add a check for shape inference functions that have meta kernels implement and should be retired. |
| |
| for decl in expected_shape_infr_decls: |
| assert decl in shape_infr_decl_lines, f"""Missing shape inference function.\n |
| Please add declare this function in {shape_inference_hdr}:\n |
| and implement it in the the corresponding shape_inference.cpp file.\n |
| {decl}""" |
| |
| def main() -> None: |
| parser = argparse.ArgumentParser(description='Generate Lazy Tensor backend files') |
| parser.add_argument( |
| '-s', |
| '--source_yaml', |
| help='path to source yaml file containing operator external definitions') |
| parser.add_argument( |
| '-o', '--output_dir', help='output directory') |
| parser.add_argument( |
| '--dry_run', type=bool, default=False, help='output directory') |
| parser.add_argument( |
| '--impl_path', type=str, default=None, help='path to the source C++ file containing kernel definitions') |
| parser.add_argument( |
| '--gen_ts_lowerings', action="store_true", |
| help='Generate TorchScript lowerings in addition to Lazy IR and NativeFunctions') |
| parser.add_argument( |
| '--node_base', type=str, default="Node", help='Name of backend specific custom Lazy IR Node base class') |
| parser.add_argument( |
| '--node_base_hdr', type=str, default=None, help='Path to header file defining custom Lazy IR Node base class') |
| parser.add_argument( |
| '--shape_inference_hdr', type=str, default=None, |
| help='Path to header file defining custom Lazy shape inference functions') |
| parser.add_argument( |
| '--tensor_class', type=str, default="torch::lazy::LazyTensor", |
| help='Name of backend specific custom Lazy Tensor class') |
| parser.add_argument( |
| '--tensor_class_hdr', type=str, default="torch/csrc/lazy/core/tensor.h", |
| help='Path to header file defining custom Lazy Tensor class') |
| options = parser.parse_args() |
| |
| run(options.source_yaml, options.output_dir, options.dry_run, options.impl_path, |
| options.gen_ts_lowerings, options.node_base, options.node_base_hdr, |
| options.tensor_class, options.tensor_class_hdr, options.shape_inference_hdr, |
| TSLazyIR) |
| |
| |
| def run(source_yaml: str, output_dir: str, dry_run: bool, impl_path: Optional[str], |
| gen_ts_lowerings: bool, node_base: str, node_base_hdr: Optional[str], |
| tensor_class: str, tensor_class_hdr: str, shape_inference_hdr: str, |
| lazy_ir_cls: Type[LazyIR]) -> None: |
| |
| # Assumes that this file lives at PYTORCH_ROOT/tools/codegen/gen_backend_stubs.py |
| pytorch_root = pathlib.Path(__file__).parent.parent.parent.absolute() |
| template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates") |
| |
| def make_file_manager(install_dir: str) -> FileManager: |
| return FileManager(install_dir=install_dir, template_dir=template_dir, dry_run=dry_run) |
| |
| fm = make_file_manager(output_dir) |
| |
| native_yaml_path = os.path.join(pytorch_root, 'aten/src/ATen/native/native_functions.yaml') |
| parsed_yaml = parse_native_yaml(native_yaml_path) |
| native_functions, backend_indices = parsed_yaml.native_functions, parsed_yaml.backend_indices |
| grouped_native_functions = get_grouped_native_functions(native_functions) |
| |
| def sort_native_function(f: Union[NativeFunctionsGroup, NativeFunction]) -> str: |
| """ |
| We sort the native function because of the note in concat_map_codegen. |
| TODO(alanwaketan): Remove this sorting hack once all ops are grouped properly. |
| """ |
| func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func |
| return str(func.name.name) |
| |
| grouped_native_functions = sorted(grouped_native_functions, key=sort_native_function) |
| parsed_backend_yaml = parse_backend_yaml(source_yaml, grouped_native_functions, backend_indices) |
| backend_key = parsed_backend_yaml.backend_key |
| autograd_key = parsed_backend_yaml.autograd_key |
| cpp_namespace = parsed_backend_yaml.cpp_namespace |
| backend_indices = parsed_backend_yaml.backend_indices |
| full_codegen = parse_full_codegen_ops(source_yaml, grouped_native_functions) |
| |
| def concat_map_codegen(func: Callable[[NativeFunction], Sequence[str]], |
| xs: Iterable[Union[NativeFunctionsGroup, NativeFunction]], |
| *, codegenInplaceVariant: bool = False) -> Iterator[str]: |
| """ |
| We code-gen for the functional variant, which is all we need for IR classes/lowerings/shape inferences, but we |
| only code-gen additional entries for the inplace variant for the native functions. |
| Note: If xs is not sorted, there may be an edge case when generating IR classes. Considering relu and relu_, if |
| we encounter relu_ before relu. we will then generate an IR class with op = at::aten::relu_ for both relu and |
| relu_ which will cause problems for relu. |
| TODO(alanwaketan): Once all ops are grouped properly, we should no longer need this hack. |
| """ |
| generated = set() |
| |
| def gen_key(func: FunctionSchema) -> Tuple[str, str]: |
| # we want to generate unique entries for overloads of functional variants, |
| # but not for inplace variants unless explicitly told `codegenInplaceVariant` |
| return (func.name.name.base, func.name.overload_name) |
| |
| for x in xs: |
| f = x.functional if isinstance(x, NativeFunctionsGroup) else x |
| # For the 'or'd terms: |
| # 1. codegenInplaceVariant means we can generate the in-place variant corresponding items. |
| # 2. not f.func.name.name.inplace means the op is not a in-place variant, so we can generate the item. |
| # 3. f.func.name.name.base not in generated means even for in-place ops we still need to generate the item |
| # as if they were the functional variants for one time. |
| if f.func.name in full_codegen and \ |
| (codegenInplaceVariant or not f.func.name.name.inplace or gen_key(f.func) not in generated): |
| generated.add(gen_key(f.func)) |
| for r in func(f): |
| yield r |
| |
| selector = SelectiveBuilder.get_nop_selector() |
| |
| assert backend_key is not None |
| class_name = backend_indices[backend_key].native_function_class_name() |
| |
| if impl_path is not None: |
| error_on_missing_kernels(native_functions, backend_indices, backend_key, |
| autograd_key, impl_path, full_codegen) |
| |
| |
| """ Validate Shape Inference Definitions |
| |
| Generated lazy native functions all perform shape inference, by first using a meta:: kernel |
| if available for that op, and otherwise using a 'compute_shape_{op}' function instead. The generator |
| knows the call signature for compute_shape_{op} becuase it matches the nativefunction (and meta::) signature, |
| so it just has to check whether the op is structured and generate a call for one or the other. It's up to the dev |
| to supply the missing compute_shape_{op} function, but the codegen at least warns you about this and provides |
| the expected signature which can be copy-pasted into shape_inference.h. |
| |
| compute_shape_{op} functions are handwritten and should be replaced over time as ops get ported |
| to structured kernels. |
| |
| See torch/csrc/lazy/core/shape_inference.cpp #READ THIS! for more information. |
| """ |
| if shape_inference_hdr is not None: |
| expected_shape_infr_decls = list( |
| concat_map_codegen( |
| dest.GenLazyShapeInferenceDefinition(backend_indices[backend_key], tensor_class), |
| grouped_native_functions, |
| codegenInplaceVariant=True |
| ) |
| ) |
| validate_shape_inference_header(shape_inference_hdr, expected_shape_infr_decls) |
| assert class_name is not None |
| |
| # Generate nativefunction declarations |
| gen_dispatchkey_nativefunc_headers(fm, class_name, cpp_namespace, backend_indices, |
| grouped_native_functions, backend_key, autograd_key) |
| |
| # Generate Dispatcher registrations which hook up the nativefunctions |
| for dispatch_key in [backend_key] if autograd_key is None else [backend_key, autograd_key]: |
| gen_dispatcher_registrations(fm, output_dir, cpp_namespace, backend_indices, grouped_native_functions, |
| backend_key, dispatch_key, selector) |
| |
| # Generate native function impls that build IR nodes |
| fm.write_with_template(f'{backend_key}NativeFunctions.cpp', 'DispatchKeyNativeFunctions.cpp', lambda: { |
| 'includes': [f'#include <{path}>' for path in [ |
| tensor_class_hdr, |
| shape_inference_hdr, |
| "ATen/Functions.h", |
| "ATen/MetaFunctions.h", |
| "ATen/Operators.h", |
| "torch/csrc/lazy/core/lazy_graph_executor.h", |
| "torch/csrc/lazy/core/metrics.h", |
| "torch/csrc/lazy/core/shape.h", |
| "lazy_tensor_core/csrc/ts_backend/aten_eager_fallback.h", |
| f"{output_dir}/{backend_key}NativeFunctions.h", |
| f"{output_dir}/{backend_key}LazyIr.h", |
| ]], |
| 'native_functions_include': '', |
| 'backend_namespace': 'torch_lazy_tensors', # this is wrong |
| 'native_function_definitions': |
| list(concat_map_codegen( |
| dest.GenLazyNativeFuncDefinition(f'{backend_key}NativeFunctions', |
| backend_indices[backend_key], |
| tensor_class), |
| grouped_native_functions, |
| codegenInplaceVariant=True |
| )), |
| }) |
| |
| # Generate IR node classes |
| fm.write_with_template(f'{backend_key}LazyIr.h', 'LazyIr.h', lambda: { |
| 'lazy_ir_sysinc': [f'#include <{path}>' for path in [ |
| "ATen/core/Formatting.h", |
| "c10/core/ScalarType.h", |
| "c10/util/Optional.h", |
| "torch/csrc/lazy/core/hash.h", |
| "torch/csrc/lazy/core/ir.h", |
| "vector", |
| ]], |
| 'lazy_ir_inc': [f'#include "{path}"' for path in [ |
| node_base_hdr if node_base_hdr is not None else None |
| ] if path is not None], |
| 'external_backend_headers': f'#include "{output_dir}/{backend_key}NativeFunctions.h"', |
| 'namespaced_headers': '', |
| 'DispatchKey': backend_key, |
| 'dispatch_namespace': backend_key.lower(), |
| 'ir_declarations': list(concat_map_codegen( |
| lazy_ir_cls(backend_indices[backend_key], node_base), |
| grouped_native_functions |
| )), |
| }) |
| |
| |
| if __name__ == '__main__': |
| main() |