blob: 57e889b19fb8d9c8431968cfcc1e42fe43927198 [file] [log] [blame]
#include <torch/csrc/jit/codegen/cuda/executor.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/ops/all_ops.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>
#include <benchmark/benchmark.h>
#include <cuda_runtime.h>
#include "utils.h"
using namespace torch::jit::fuser::cuda;
//------------------------------------------------------------------------------
static void setupBatchNorm(Fusion* fusion, DataType dtype) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);
FusionGuard fg(fusion);
const bool kTraining = true;
const float kMomentum = 0.1;
const float kEps = 1e-5;
// setup fusion
auto input = makeContigTensor(4, dtype);
auto weight = makeContigTensor(1, dtype);
auto bias = makeContigTensor(1, dtype);
auto running_mean = makeContigTensor(1, DataType::Float);
auto running_var = makeContigTensor(1, DataType::Float);
fusion->addInput(input);
fusion->addInput(weight);
fusion->addInput(bias);
fusion->addInput(running_mean);
fusion->addInput(running_var);
if (dtype == DataType::Half) {
input = castOp(DataType::Float, input);
weight = castOp(DataType::Float, weight);
bias = castOp(DataType::Float, bias);
}
auto momentum_ptr = IrBuilder::create<Double>(kMomentum);
auto eps_ptr = IrBuilder::create<Double>(kEps);
auto result = batch_norm(
input,
weight,
bias,
running_mean,
running_var,
kTraining,
momentum_ptr,
eps_ptr);
auto output = result.output;
if (dtype == DataType::Half) {
output = castOp(DataType::Half, output);
}
fusion->addOutput(output);
}
static void NvFuserScheduler_BatchNorm(
benchmark::State& benchmark_state,
FusionExecutorCache* fusion_executor_cache,
DataType dtype) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);
const bool kTraining = true;
const float kMomentum = 0.1;
const float kEps = 1e-5;
std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(1),
benchmark_state.range(2),
benchmark_state.range(2)};
// inputs
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
auto fp32_options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
at::Tensor at_x = at::randn(input_shape, options);
at::Tensor at_weight = at::ones({input_shape[1]}, options);
at::Tensor at_bias = at::zeros({input_shape[1]}, options);
at::Tensor at_run_mean = at::zeros({input_shape[1]}, fp32_options);
at::Tensor at_run_var = at::ones({input_shape[1]}, fp32_options);
std::vector<c10::IValue> aten_inputs(
{at_x, at_weight, at_bias, at_run_mean, at_run_var});
runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs);
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) *
((2 * (at_x.numel() + at_weight.numel() + at_bias.numel())) *
int64_t(dataTypeSize(dtype)) +
(2 * (at_run_mean.numel() + at_run_var.numel()) *
int64_t(dataTypeSize(DataType::Float)))));
}
//------------------------------------------------------------------------------
static void Baseline_BatchNorm(
benchmark::State& benchmark_state,
DataType dtype) {
TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half);
const float kMomentum = 0.1;
const float kEps = 1e-5;
std::vector<int64_t> input_shape{
benchmark_state.range(0),
benchmark_state.range(1),
benchmark_state.range(2),
benchmark_state.range(2)};
// inputs
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
auto fp32_options =
at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0);
at::Tensor at_x = at::randn(input_shape, options);
at::Tensor at_weight = at::ones({input_shape[1]}, options);
at::Tensor at_bias = at::zeros({input_shape[1]}, options);
at::Tensor at_run_mean = at::zeros({input_shape[1]}, fp32_options);
at::Tensor at_run_var = at::ones({input_shape[1]}, fp32_options);
auto ato_weight = c10::optional<at::Tensor>(at_weight);
auto ato_bias = c10::optional<at::Tensor>(at_bias);
auto ato_run_mean = c10::optional<at::Tensor>(at_run_mean);
auto ato_run_var = c10::optional<at::Tensor>(at_run_var);
auto output = at::batch_norm(
at_x,
ato_weight,
ato_bias,
ato_run_mean,
ato_run_var,
true,
kMomentum,
kEps,
true);
clearL2Cache();
cudaDeviceSynchronize();
for (auto _ : benchmark_state) {
CudaKernelTimer timer;
auto output = at::batch_norm(
at_x,
ato_weight,
ato_bias,
ato_run_mean,
ato_run_var,
true,
kMomentum,
kEps,
true);
benchmark_state.SetIterationTime(timer.elapsed() / 1000.0);
cudaDeviceSynchronize();
clearL2Cache();
cudaDeviceSynchronize();
}
benchmark_state.SetBytesProcessed(
int64_t(benchmark_state.iterations()) *
((2 * (at_x.numel() + at_weight.numel() + at_bias.numel())) *
int64_t(dataTypeSize(dtype)) +
(2 * (at_run_mean.numel() + at_run_var.numel()) *
int64_t(dataTypeSize(DataType::Float)))));
}
//------------------------------------------------------------------------------
static void Baseline_BatchNorm_cuDNN_fp32(benchmark::State& benchmark_state) {
Baseline_BatchNorm(benchmark_state, DataType::Float);
}
static void Baseline_BatchNorm_cuDNN_fp16(benchmark::State& benchmark_state) {
Baseline_BatchNorm(benchmark_state, DataType::Half);
}
//------------------------------------------------------------------------------
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_BatchNorm_fp32,
setupBatchNorm,
NvFuserScheduler_BatchNorm,
DataType::Float);
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_BatchNorm_fp32)
// ->RangeMultiplier(2)
->Ranges({{64, 512}, {32, 128}, {2, 64}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_BatchNorm_fp32)
// ->RangeMultiplier(2)
->Ranges({{2, 64}, {2, 32}, {2, 256}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_DEFINE(
NvFuserScheduler_BatchNorm_fp16,
setupBatchNorm,
NvFuserScheduler_BatchNorm,
DataType::Half);
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_BatchNorm_fp16)
// ->RangeMultiplier(2)
->Ranges({{64, 512}, {32, 128}, {2, 128}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
NVFUSER_BENCHMARK_RUN(NvFuserScheduler_BatchNorm_fp16)
// ->RangeMultiplier(2)
->Ranges({{2, 64}, {2, 32}, {2, 256}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
//------------------------------------------------------------------------------
BENCHMARK(Baseline_BatchNorm_cuDNN_fp32)
// ->RangeMultiplier(2)
// cuDNN didn't make it to 1024
->Ranges({{64, 512}, {32, 128}, {2, 64}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_BatchNorm_cuDNN_fp32)
// ->RangeMultiplier(2)
->Ranges({{2, 64}, {2, 32}, {2, 256}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_BatchNorm_cuDNN_fp16)
// ->RangeMultiplier(2)
->Ranges({{64, 512}, {32, 128}, {2, 128}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(Baseline_BatchNorm_cuDNN_fp16)
// ->RangeMultiplier(2)
->Ranges({{2, 64}, {2, 32}, {2, 256}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();