blob: 8f1d5c097d01f8c3d776476a940e3996ab5d962d [file] [log] [blame]
// Adapted from interp.cpp from Caffe util by Pauline Luc
// Originally developed by George Papandreou
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/UpSample.h>
namespace at {
namespace native {
namespace {
template <typename scalar_t>
static void upsample_linear1d_out_frame(
scalar_t* odata,
scalar_t* idata,
int64_t input_width,
int64_t output_width,
int64_t nbatch,
int64_t channels,
bool align_corners,
c10::optional<double> scales) {
channels = channels * nbatch;
// special case: just copy
if (input_width == output_width) {
for (int64_t w2 = 0; w2 < output_width; ++w2) {
const int64_t w1 = w2;
const scalar_t* pos1 = &idata[w1];
scalar_t* pos2 = &odata[w2];
for (int64_t c = 0; c < channels; ++c) {
pos2[0] = pos1[0];
pos1 += input_width;
pos2 += output_width;
}
}
return;
}
const scalar_t rwidth = area_pixel_compute_scale<scalar_t>(
input_width, output_width, align_corners, scales);
for (int64_t w2 = 0; w2 < output_width; ++w2) {
const scalar_t w1r = area_pixel_compute_source_index<scalar_t>(
rwidth, w2, align_corners, /*cubic=*/false);
const int64_t w1 = w1r;
const int64_t w1p = (w1 < input_width - 1) ? 1 : 0;
const scalar_t w1lambda = w1r - w1;
const scalar_t w0lambda = static_cast<scalar_t>(1.) - w1lambda;
const scalar_t* pos1 = &idata[w1];
// index w2 is interpolated by idata[w1] and (itself or idata[w1 + 1])
scalar_t* pos2 = &odata[w2];
for (int64_t c = 0; c < channels; ++c) {
pos2[0] = w0lambda * pos1[0] + w1lambda * pos1[w1p];
pos1 += input_width;
pos2 += output_width;
}
}
}
template <typename scalar_t>
static void upsample_linear1d_backward_out_frame(
scalar_t* odata,
scalar_t* idata,
int64_t input_width,
int64_t output_width,
int64_t nbatch,
int64_t channels,
bool align_corners,
c10::optional<double> scales) {
channels = nbatch * channels;
// special case: same-size matching grids
if (input_width == output_width) {
for (int64_t w2 = 0; w2 < output_width; ++w2) {
const int64_t w1 = w2;
scalar_t* pos1 = &idata[w1];
const scalar_t* pos2 = &odata[w2];
for (int64_t c = 0; c < channels; ++c) {
pos1[0] += pos2[0];
pos1 += input_width;
pos2 += output_width;
}
}
return;
}
const scalar_t rwidth = area_pixel_compute_scale<scalar_t>(
input_width, output_width, align_corners, scales);
for (int64_t w2 = 0; w2 < output_width; ++w2) {
const scalar_t w1r = area_pixel_compute_source_index<scalar_t>(
rwidth, w2, align_corners, /*cubic=*/false);
const int64_t w1 = w1r;
const int64_t w1p = (w1 < input_width - 1) ? 1 : 0;
const scalar_t w1lambda = w1r - w1;
const scalar_t w0lambda = static_cast<scalar_t>(1.) - w1lambda;
scalar_t* pos1 = &idata[w1];
const scalar_t* pos2 = &odata[w2];
for (int64_t c = 0; c < channels; ++c) {
pos1[0] += w0lambda * pos2[0];
pos1[w1p] += w1lambda * pos2[0];
pos1 += input_width;
pos2 += output_width;
}
}
}
static void upsample_linear1d_out_cpu_template(
Tensor& output,
const Tensor& input_,
IntArrayRef output_size,
bool align_corners,
c10::optional<double> scales) {
TORCH_CHECK(
output_size.size() == 1,
"It is expected output_size equals to 1, but got size ",
output_size.size());
int64_t output_width = output_size[0];
int64_t nbatch = input_.size(0);
int64_t channels = input_.size(1);
int64_t input_width = input_.size(2);
upsample_1d_shape_check(
input_,
Tensor(),
nbatch,
channels,
input_width,
output_width);
auto input = input_.contiguous();
output.resize_({nbatch, channels, output_width});
output.zero_();
AT_ASSERT(input_width > 0 && output_width > 0);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "upsample_linear1d", [&] {
auto* idata = input.data_ptr<scalar_t>();
auto* odata = output.data_ptr<scalar_t>();
upsample_linear1d_out_frame<scalar_t>(
odata,
idata,
input_width,
output_width,
nbatch,
channels,
align_corners,
scales);
});
}
static void upsample_linear1d_backward_out_cpu_template(
Tensor& grad_input,
const Tensor& grad_output_,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<double> scales) {
TORCH_CHECK(
output_size.size() == 1,
"It is expected output_size equals to 1, but got size ",
output_size.size());
TORCH_CHECK(
input_size.size() == 3,
"It is expected input_size equals to 3, but got size ",
input_size.size());
int64_t output_width = output_size[0];
int64_t nbatch = input_size[0];
int64_t channels = input_size[1];
int64_t input_width = input_size[2];
upsample_1d_shape_check(
Tensor(),
grad_output_,
nbatch,
channels,
input_width,
output_width);
auto grad_output = grad_output_.contiguous();
grad_input.resize_({nbatch, channels, input_width});
grad_input.zero_();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad_output.scalar_type(), "upsample_linear1d_backward", [&] {
scalar_t* idata = grad_input.data_ptr<scalar_t>();
scalar_t* odata = grad_output.data_ptr<scalar_t>();
upsample_linear1d_backward_out_frame<scalar_t>(
odata,
idata,
input_width,
output_width,
nbatch,
channels,
align_corners,
scales);
});
}
} // namespace
Tensor& upsample_linear1d_out_cpu(
Tensor& output,
const Tensor& input,
IntArrayRef output_size,
bool align_corners,
c10::optional<double> scales) {
upsample_linear1d_out_cpu_template(output, input, output_size, align_corners, scales);
return output;
}
Tensor upsample_linear1d_cpu(
const Tensor& input,
IntArrayRef output_size,
bool align_corners,
c10::optional<double> scales) {
auto output = at::empty({0}, input.options());
upsample_linear1d_out_cpu_template(output, input, output_size, align_corners, scales);
return output;
}
Tensor& upsample_linear1d_backward_out_cpu(
Tensor& grad_input,
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<double> scales) {
upsample_linear1d_backward_out_cpu_template(
grad_input, grad_output, output_size, input_size, align_corners, scales);
return grad_input;
}
Tensor upsample_linear1d_backward_cpu(
const Tensor& grad_output,
IntArrayRef output_size,
IntArrayRef input_size,
bool align_corners,
c10::optional<double> scales) {
auto grad_input = at::zeros(input_size, grad_output.options());
upsample_linear1d_backward_out_cpu_template(
grad_input, grad_output, output_size, input_size, align_corners, scales);
return grad_input;
}
} // namespace native
} // namespace at