blob: a313bab00b08825af4c0041c6c11efc6b187ef51 [file] [log] [blame]
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CAFFE2_OPERATORS_ROW_MUL_H_
#define CAFFE2_OPERATORS_ROW_MUL_H_
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
// A hacky version of Mul with broadcast
// RowMul([mat, w], [output])
template <typename T, class Context>
class RowMulOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(RowMulOp);
bool RunOnDevice() override {
auto& mat = Input(0);
auto& w = Input(1);
auto* output = Output(0);
output->ResizeLike(mat);
T* output_data = output->template mutable_data<T>();
const T* mat_data = mat.template data<T>();
const T* w_data = w.template data<T>();
// Dimension checking
CAFFE_ENFORCE_EQ(
w.size(),
mat.dim32(0),
"Length of w should be equal to the first dim of mat");
auto block_size = mat.size_from_dim(1);
for (int i = 0; i < w.size(); i++) {
size_t offset = i * block_size;
for (int j = 0; j < block_size; j++) {
output_data[offset + j] = mat_data[offset + j] * w_data[i];
}
}
return true;
}
};
// A hacky version
template <typename T, class Context>
class ReduceTailSumOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(ReduceTailSumOp);
bool RunOnDevice() override {
auto& mat = Input(0);
auto* output = Output(0);
int N = mat.dim32(0);
int block_size = mat.size_from_dim(1);
output->Resize(N);
T* output_data = output->template mutable_data<T>();
const T* mat_data = mat.template data<T>();
for (int i = 0; i < N; i++) {
output_data[i] = 0;
size_t offset = i * block_size;
for (int j = 0; j < block_size; j++) {
output_data[i] += mat_data[offset + j];
}
}
return true;
}
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_ROW_MUL_H_