blob: 584f7596c84280f618ec2f82a1d6ea2339181a25 [file] [log] [blame]
from . import benchmark
import scipy.special
class SoftmaxBench(benchmark.Benchmark):
def __init__(self, mode, device, M, N):
super().__init__(mode, device)
self.M = M
self.N = N
self.data = self.rand([M, N], device=device, requires_grad=self.requires_grad)
def forward(self):
y = self.softmax(self.data, dim=1)
return y
def reference(self):
return scipy.special.softmax(self.numpy(self.data), axis=1)
def config(self):
return [self.M, self.N]
@staticmethod
def module():
return "softmax"
def memory_workload(self):
if self.mode == "fwd":
sol_count = 1 + 1
algorithmic_count = 3 + 1
else:
sol_count = (1 + 1) + (1 + 1)
algorithmic_count = (3 + 1) + (3 + 1)
buffer_size = self.M * self.N * 4
return {
"sol": buffer_size * sol_count,
"algorithmic": buffer_size * algorithmic_count,
}
@staticmethod
def default_configs():
return [[128, 1 << 16]]
benchmark.register_benchmark_class(SoftmaxBench)