| from ... import Tensor |
| from .module import Module |
| from .linear import Linear |
| from collections import namedtuple |
| from typing import List, Sequence |
| from .container import ModuleList |
| |
| _ASMoutput = namedtuple('ASMoutput', ['output', 'loss']) |
| |
| |
| class AdaptiveLogSoftmaxWithLoss(Module): |
| in_features: int = ... |
| n_classes: int = ... |
| cutoffs: List[int] = ... |
| div_value: float = ... |
| head_bias: bool = ... |
| head: Linear = ... |
| tail: ModuleList = ... |
| |
| def __init__(self, in_features: int, n_classes: int, cutoffs: Sequence[int], div_value: float = ..., |
| head_bias: bool = ...) -> None: ... |
| |
| def reset_parameters(self) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> _ASMoutput: ... |
| |
| def log_prob(self, input: Tensor) -> List[float]: ... |
| |
| def predict(self, input: Tensor) -> Tensor: ... |