| //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// | |
| // | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
| // See https://llvm.org/LICENSE.txt for license information. | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
| // | |
| //===----------------------------------------------------------------------===// | |
| // | |
| // This file contains some functions that are useful for math stuff. | |
| // | |
| //===----------------------------------------------------------------------===// | |
| #ifndef LLVM_SUPPORT_MATHEXTRAS_H | |
| #define LLVM_SUPPORT_MATHEXTRAS_H | |
| #include <algorithm> | |
| #include <cmath> | |
| #include <cassert> | |
| #include <climits> | |
| #include <cstring> | |
| #include <limits> | |
| #include <type_traits> | |
| #ifdef __ANDROID_NDK__ | |
| #include <android/api-level.h> | |
| #endif | |
| #ifndef __has_builtin | |
| # define __has_builtin(x) 0 | |
| #endif | |
| #ifndef LLVM_GNUC_PREREQ | |
| # if defined(__GNUC__) && defined(__GNUC_MINOR__) && defined(__GNUC_PATCHLEVEL__) | |
| # define LLVM_GNUC_PREREQ(maj, min, patch) \ | |
| ((__GNUC__ << 20) + (__GNUC_MINOR__ << 10) + __GNUC_PATCHLEVEL__ >= \ | |
| ((maj) << 20) + ((min) << 10) + (patch)) | |
| # elif defined(__GNUC__) && defined(__GNUC_MINOR__) | |
| # define LLVM_GNUC_PREREQ(maj, min, patch) \ | |
| ((__GNUC__ << 20) + (__GNUC_MINOR__ << 10) >= ((maj) << 20) + ((min) << 10)) | |
| # else | |
| # define LLVM_GNUC_PREREQ(maj, min, patch) 0 | |
| # endif | |
| #endif | |
| #ifdef _MSC_VER | |
| // Declare these intrinsics manually rather including intrin.h. It's very | |
| // expensive, and MathExtras.h is popular. | |
| // #include <intrin.h> | |
| extern "C" { | |
| unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask); | |
| unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask); | |
| unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask); | |
| unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask); | |
| } | |
| #endif | |
| namespace llvm { | |
| /// The behavior an operation has on an input of 0. | |
| enum ZeroBehavior { | |
| /// The returned value is undefined. | |
| ZB_Undefined, | |
| /// The returned value is numeric_limits<T>::max() | |
| ZB_Max, | |
| /// The returned value is numeric_limits<T>::digits | |
| ZB_Width | |
| }; | |
| namespace detail { | |
| template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { | |
| static std::size_t count(T Val, ZeroBehavior) { | |
| if (!Val) | |
| return std::numeric_limits<T>::digits; | |
| if (Val & 0x1) | |
| return 0; | |
| // Bisection method. | |
| std::size_t ZeroBits = 0; | |
| T Shift = std::numeric_limits<T>::digits >> 1; | |
| T Mask = std::numeric_limits<T>::max() >> Shift; | |
| while (Shift) { | |
| if ((Val & Mask) == 0) { | |
| Val >>= Shift; | |
| ZeroBits |= Shift; | |
| } | |
| Shift >>= 1; | |
| Mask >>= Shift; | |
| } | |
| return ZeroBits; | |
| } | |
| }; | |
| #if __GNUC__ >= 4 || defined(_MSC_VER) | |
| template <typename T> struct TrailingZerosCounter<T, 4> { | |
| static std::size_t count(T Val, ZeroBehavior ZB) { | |
| if (ZB != ZB_Undefined && Val == 0) | |
| return 32; | |
| #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0) | |
| return __builtin_ctz(Val); | |
| #elif defined(_MSC_VER) | |
| unsigned long Index; | |
| _BitScanForward(&Index, Val); | |
| return Index; | |
| #endif | |
| } | |
| }; | |
| #if !defined(_MSC_VER) || defined(_M_X64) | |
| template <typename T> struct TrailingZerosCounter<T, 8> { | |
| static std::size_t count(T Val, ZeroBehavior ZB) { | |
| if (ZB != ZB_Undefined && Val == 0) | |
| return 64; | |
| #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0) | |
| return __builtin_ctzll(Val); | |
| #elif defined(_MSC_VER) | |
| unsigned long Index; | |
| _BitScanForward64(&Index, Val); | |
| return Index; | |
| #endif | |
| } | |
| }; | |
| #endif | |
| #endif | |
| } // namespace detail | |
| /// Count number of 0's from the least significant bit to the most | |
| /// stopping at the first 1. | |
| /// | |
| /// Only unsigned integral types are allowed. | |
| /// | |
| /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are | |
| /// valid arguments. | |
| template <typename T> | |
| std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { | |
| static_assert(std::numeric_limits<T>::is_integer && | |
| !std::numeric_limits<T>::is_signed, | |
| "Only unsigned integral types are allowed."); | |
| return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); | |
| } | |
| namespace detail { | |
| template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { | |
| static std::size_t count(T Val, ZeroBehavior) { | |
| if (!Val) | |
| return std::numeric_limits<T>::digits; | |
| // Bisection method. | |
| std::size_t ZeroBits = 0; | |
| for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { | |
| T Tmp = Val >> Shift; | |
| if (Tmp) | |
| Val = Tmp; | |
| else | |
| ZeroBits |= Shift; | |
| } | |
| return ZeroBits; | |
| } | |
| }; | |
| #if __GNUC__ >= 4 || defined(_MSC_VER) | |
| template <typename T> struct LeadingZerosCounter<T, 4> { | |
| static std::size_t count(T Val, ZeroBehavior ZB) { | |
| if (ZB != ZB_Undefined && Val == 0) | |
| return 32; | |
| #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0) | |
| return __builtin_clz(Val); | |
| #elif defined(_MSC_VER) | |
| unsigned long Index; | |
| _BitScanReverse(&Index, Val); | |
| return Index ^ 31; | |
| #endif | |
| } | |
| }; | |
| #if !defined(_MSC_VER) || defined(_M_X64) | |
| template <typename T> struct LeadingZerosCounter<T, 8> { | |
| static std::size_t count(T Val, ZeroBehavior ZB) { | |
| if (ZB != ZB_Undefined && Val == 0) | |
| return 64; | |
| #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0) | |
| return __builtin_clzll(Val); | |
| #elif defined(_MSC_VER) | |
| unsigned long Index; | |
| _BitScanReverse64(&Index, Val); | |
| return Index ^ 63; | |
| #endif | |
| } | |
| }; | |
| #endif | |
| #endif | |
| } // namespace detail | |
| /// Count number of 0's from the most significant bit to the least | |
| /// stopping at the first 1. | |
| /// | |
| /// Only unsigned integral types are allowed. | |
| /// | |
| /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are | |
| /// valid arguments. | |
| template <typename T> | |
| std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { | |
| static_assert(std::numeric_limits<T>::is_integer && | |
| !std::numeric_limits<T>::is_signed, | |
| "Only unsigned integral types are allowed."); | |
| return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); | |
| } | |
| /// Get the index of the first set bit starting from the least | |
| /// significant bit. | |
| /// | |
| /// Only unsigned integral types are allowed. | |
| /// | |
| /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are | |
| /// valid arguments. | |
| template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { | |
| if (ZB == ZB_Max && Val == 0) | |
| return std::numeric_limits<T>::max(); | |
| return countTrailingZeros(Val, ZB_Undefined); | |
| } | |
| /// Create a bitmask with the N right-most bits set to 1, and all other | |
| /// bits set to 0. Only unsigned types are allowed. | |
| template <typename T> T maskTrailingOnes(unsigned N) { | |
| static_assert(std::is_unsigned<T>::value, "Invalid type!"); | |
| const unsigned Bits = CHAR_BIT * sizeof(T); | |
| assert(N <= Bits && "Invalid bit index"); | |
| return N == 0 ? 0 : (T(-1) >> (Bits - N)); | |
| } | |
| /// Create a bitmask with the N left-most bits set to 1, and all other | |
| /// bits set to 0. Only unsigned types are allowed. | |
| template <typename T> T maskLeadingOnes(unsigned N) { | |
| return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); | |
| } | |
| /// Create a bitmask with the N right-most bits set to 0, and all other | |
| /// bits set to 1. Only unsigned types are allowed. | |
| template <typename T> T maskTrailingZeros(unsigned N) { | |
| return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); | |
| } | |
| /// Create a bitmask with the N left-most bits set to 0, and all other | |
| /// bits set to 1. Only unsigned types are allowed. | |
| template <typename T> T maskLeadingZeros(unsigned N) { | |
| return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); | |
| } | |
| /// Get the index of the last set bit starting from the least | |
| /// significant bit. | |
| /// | |
| /// Only unsigned integral types are allowed. | |
| /// | |
| /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are | |
| /// valid arguments. | |
| template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { | |
| if (ZB == ZB_Max && Val == 0) | |
| return std::numeric_limits<T>::max(); | |
| // Use ^ instead of - because both gcc and llvm can remove the associated ^ | |
| // in the __builtin_clz intrinsic on x86. | |
| return countLeadingZeros(Val, ZB_Undefined) ^ | |
| (std::numeric_limits<T>::digits - 1); | |
| } | |
| /// Macro compressed bit reversal table for 256 bits. | |
| /// | |
| /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable | |
| static const unsigned char BitReverseTable256[256] = { | |
| #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 | |
| #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) | |
| #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) | |
| R6(0), R6(2), R6(1), R6(3) | |
| #undef R2 | |
| #undef R4 | |
| #undef R6 | |
| }; | |
| /// Reverse the bits in \p Val. | |
| template <typename T> | |
| T reverseBits(T Val) { | |
| unsigned char in[sizeof(Val)]; | |
| unsigned char out[sizeof(Val)]; | |
| std::memcpy(in, &Val, sizeof(Val)); | |
| for (unsigned i = 0; i < sizeof(Val); ++i) | |
| out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; | |
| std::memcpy(&Val, out, sizeof(Val)); | |
| return Val; | |
| } | |
| // NOTE: The following support functions use the _32/_64 extensions instead of | |
| // type overloading so that signed and unsigned integers can be used without | |
| // ambiguity. | |
| /// Return the high 32 bits of a 64 bit value. | |
| constexpr inline uint32_t Hi_32(uint64_t Value) { | |
| return static_cast<uint32_t>(Value >> 32); | |
| } | |
| /// Return the low 32 bits of a 64 bit value. | |
| constexpr inline uint32_t Lo_32(uint64_t Value) { | |
| return static_cast<uint32_t>(Value); | |
| } | |
| /// Make a 64-bit integer from a high / low pair of 32-bit integers. | |
| constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { | |
| return ((uint64_t)High << 32) | (uint64_t)Low; | |
| } | |
| /// Checks if an integer fits into the given bit width. | |
| template <unsigned N> constexpr inline bool isInt(int64_t x) { | |
| return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); | |
| } | |
| // Template specializations to get better code for common cases. | |
| template <> constexpr inline bool isInt<8>(int64_t x) { | |
| return static_cast<int8_t>(x) == x; | |
| } | |
| template <> constexpr inline bool isInt<16>(int64_t x) { | |
| return static_cast<int16_t>(x) == x; | |
| } | |
| template <> constexpr inline bool isInt<32>(int64_t x) { | |
| return static_cast<int32_t>(x) == x; | |
| } | |
| /// Checks if a signed integer is an N bit number shifted left by S. | |
| template <unsigned N, unsigned S> | |
| constexpr inline bool isShiftedInt(int64_t x) { | |
| static_assert( | |
| N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); | |
| static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); | |
| return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); | |
| } | |
| /// Checks if an unsigned integer fits into the given bit width. | |
| /// | |
| /// This is written as two functions rather than as simply | |
| /// | |
| /// return N >= 64 || X < (UINT64_C(1) << N); | |
| /// | |
| /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting | |
| /// left too many places. | |
| template <unsigned N> | |
| constexpr inline typename std::enable_if<(N < 64), bool>::type | |
| isUInt(uint64_t X) { | |
| static_assert(N > 0, "isUInt<0> doesn't make sense"); | |
| return X < (UINT64_C(1) << (N)); | |
| } | |
| template <unsigned N> | |
| constexpr inline typename std::enable_if<N >= 64, bool>::type | |
| isUInt(uint64_t X) { | |
| return true; | |
| } | |
| // Template specializations to get better code for common cases. | |
| template <> constexpr inline bool isUInt<8>(uint64_t x) { | |
| return static_cast<uint8_t>(x) == x; | |
| } | |
| template <> constexpr inline bool isUInt<16>(uint64_t x) { | |
| return static_cast<uint16_t>(x) == x; | |
| } | |
| template <> constexpr inline bool isUInt<32>(uint64_t x) { | |
| return static_cast<uint32_t>(x) == x; | |
| } | |
| /// Checks if a unsigned integer is an N bit number shifted left by S. | |
| template <unsigned N, unsigned S> | |
| constexpr inline bool isShiftedUInt(uint64_t x) { | |
| static_assert( | |
| N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); | |
| static_assert(N + S <= 64, | |
| "isShiftedUInt<N, S> with N + S > 64 is too wide."); | |
| // Per the two static_asserts above, S must be strictly less than 64. So | |
| // 1 << S is not undefined behavior. | |
| return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); | |
| } | |
| /// Gets the maximum value for a N-bit unsigned integer. | |
| inline uint64_t maxUIntN(uint64_t N) { | |
| assert(N > 0 && N <= 64 && "integer width out of range"); | |
| // uint64_t(1) << 64 is undefined behavior, so we can't do | |
| // (uint64_t(1) << N) - 1 | |
| // without checking first that N != 64. But this works and doesn't have a | |
| // branch. | |
| return UINT64_MAX >> (64 - N); | |
| } | |
| /// Gets the minimum value for a N-bit signed integer. | |
| inline int64_t minIntN(int64_t N) { | |
| assert(N > 0 && N <= 64 && "integer width out of range"); | |
| return -(UINT64_C(1)<<(N-1)); | |
| } | |
| /// Gets the maximum value for a N-bit signed integer. | |
| inline int64_t maxIntN(int64_t N) { | |
| assert(N > 0 && N <= 64 && "integer width out of range"); | |
| // This relies on two's complement wraparound when N == 64, so we convert to | |
| // int64_t only at the very end to avoid UB. | |
| return (UINT64_C(1) << (N - 1)) - 1; | |
| } | |
| /// Checks if an unsigned integer fits into the given (dynamic) bit width. | |
| inline bool isUIntN(unsigned N, uint64_t x) { | |
| return N >= 64 || x <= maxUIntN(N); | |
| } | |
| /// Checks if an signed integer fits into the given (dynamic) bit width. | |
| inline bool isIntN(unsigned N, int64_t x) { | |
| return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); | |
| } | |
| /// Return true if the argument is a non-empty sequence of ones starting at the | |
| /// least significant bit with the remainder zero (32 bit version). | |
| /// Ex. isMask_32(0x0000FFFFU) == true. | |
| constexpr inline bool isMask_32(uint32_t Value) { | |
| return Value && ((Value + 1) & Value) == 0; | |
| } | |
| /// Return true if the argument is a non-empty sequence of ones starting at the | |
| /// least significant bit with the remainder zero (64 bit version). | |
| constexpr inline bool isMask_64(uint64_t Value) { | |
| return Value && ((Value + 1) & Value) == 0; | |
| } | |
| /// Return true if the argument contains a non-empty sequence of ones with the | |
| /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. | |
| constexpr inline bool isShiftedMask_32(uint32_t Value) { | |
| return Value && isMask_32((Value - 1) | Value); | |
| } | |
| /// Return true if the argument contains a non-empty sequence of ones with the | |
| /// remainder zero (64 bit version.) | |
| constexpr inline bool isShiftedMask_64(uint64_t Value) { | |
| return Value && isMask_64((Value - 1) | Value); | |
| } | |
| /// Return true if the argument is a power of two > 0. | |
| /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) | |
| constexpr inline bool isPowerOf2_32(uint32_t Value) { | |
| return Value && !(Value & (Value - 1)); | |
| } | |
| /// Return true if the argument is a power of two > 0 (64 bit edition.) | |
| constexpr inline bool isPowerOf2_64(uint64_t Value) { | |
| return Value && !(Value & (Value - 1)); | |
| } | |
| /// Count the number of ones from the most significant bit to the first | |
| /// zero bit. | |
| /// | |
| /// Ex. countLeadingOnes(0xFF0FFF00) == 8. | |
| /// Only unsigned integral types are allowed. | |
| /// | |
| /// \param ZB the behavior on an input of all ones. Only ZB_Width and | |
| /// ZB_Undefined are valid arguments. | |
| template <typename T> | |
| std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { | |
| static_assert(std::numeric_limits<T>::is_integer && | |
| !std::numeric_limits<T>::is_signed, | |
| "Only unsigned integral types are allowed."); | |
| return countLeadingZeros<T>(~Value, ZB); | |
| } | |
| /// Count the number of ones from the least significant bit to the first | |
| /// zero bit. | |
| /// | |
| /// Ex. countTrailingOnes(0x00FF00FF) == 8. | |
| /// Only unsigned integral types are allowed. | |
| /// | |
| /// \param ZB the behavior on an input of all ones. Only ZB_Width and | |
| /// ZB_Undefined are valid arguments. | |
| template <typename T> | |
| std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { | |
| static_assert(std::numeric_limits<T>::is_integer && | |
| !std::numeric_limits<T>::is_signed, | |
| "Only unsigned integral types are allowed."); | |
| return countTrailingZeros<T>(~Value, ZB); | |
| } | |
| namespace detail { | |
| template <typename T, std::size_t SizeOfT> struct PopulationCounter { | |
| static unsigned count(T Value) { | |
| // Generic version, forward to 32 bits. | |
| static_assert(SizeOfT <= 4, "Not implemented!"); | |
| #if __GNUC__ >= 4 | |
| return __builtin_popcount(Value); | |
| #else | |
| uint32_t v = Value; | |
| v = v - ((v >> 1) & 0x55555555); | |
| v = (v & 0x33333333) + ((v >> 2) & 0x33333333); | |
| return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; | |
| #endif | |
| } | |
| }; | |
| template <typename T> struct PopulationCounter<T, 8> { | |
| static unsigned count(T Value) { | |
| #if __GNUC__ >= 4 | |
| return __builtin_popcountll(Value); | |
| #else | |
| uint64_t v = Value; | |
| v = v - ((v >> 1) & 0x5555555555555555ULL); | |
| v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); | |
| v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; | |
| return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); | |
| #endif | |
| } | |
| }; | |
| } // namespace detail | |
| /// Count the number of set bits in a value. | |
| /// Ex. countPopulation(0xF000F000) = 8 | |
| /// Returns 0 if the word is zero. | |
| template <typename T> | |
| inline unsigned countPopulation(T Value) { | |
| static_assert(std::numeric_limits<T>::is_integer && | |
| !std::numeric_limits<T>::is_signed, | |
| "Only unsigned integral types are allowed."); | |
| return detail::PopulationCounter<T, sizeof(T)>::count(Value); | |
| } | |
| /// Return the log base 2 of the specified value. | |
| inline double Log2(double Value) { | |
| #if defined(__ANDROID_API__) && __ANDROID_API__ < 18 | |
| return __builtin_log(Value) / __builtin_log(2.0); | |
| #else | |
| return log2(Value); | |
| #endif | |
| } | |
| /// Return the floor log base 2 of the specified value, -1 if the value is zero. | |
| /// (32 bit edition.) | |
| /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 | |
| inline unsigned Log2_32(uint32_t Value) { | |
| return 31 - countLeadingZeros(Value); | |
| } | |
| /// Return the floor log base 2 of the specified value, -1 if the value is zero. | |
| /// (64 bit edition.) | |
| inline unsigned Log2_64(uint64_t Value) { | |
| return 63 - countLeadingZeros(Value); | |
| } | |
| /// Return the ceil log base 2 of the specified value, 32 if the value is zero. | |
| /// (32 bit edition). | |
| /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 | |
| inline unsigned Log2_32_Ceil(uint32_t Value) { | |
| return 32 - countLeadingZeros(Value - 1); | |
| } | |
| /// Return the ceil log base 2 of the specified value, 64 if the value is zero. | |
| /// (64 bit edition.) | |
| inline unsigned Log2_64_Ceil(uint64_t Value) { | |
| return 64 - countLeadingZeros(Value - 1); | |
| } | |
| /// Return the greatest common divisor of the values using Euclid's algorithm. | |
| inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { | |
| while (B) { | |
| uint64_t T = B; | |
| B = A % B; | |
| A = T; | |
| } | |
| return A; | |
| } | |
| /// This function takes a 64-bit integer and returns the bit equivalent double. | |
| inline double BitsToDouble(uint64_t Bits) { | |
| double D; | |
| static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); | |
| memcpy(&D, &Bits, sizeof(Bits)); | |
| return D; | |
| } | |
| /// This function takes a 32-bit integer and returns the bit equivalent float. | |
| inline float BitsToFloat(uint32_t Bits) { | |
| float F; | |
| static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); | |
| memcpy(&F, &Bits, sizeof(Bits)); | |
| return F; | |
| } | |
| /// This function takes a double and returns the bit equivalent 64-bit integer. | |
| /// Note that copying doubles around changes the bits of NaNs on some hosts, | |
| /// notably x86, so this routine cannot be used if these bits are needed. | |
| inline uint64_t DoubleToBits(double Double) { | |
| uint64_t Bits; | |
| static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); | |
| memcpy(&Bits, &Double, sizeof(Double)); | |
| return Bits; | |
| } | |
| /// This function takes a float and returns the bit equivalent 32-bit integer. | |
| /// Note that copying floats around changes the bits of NaNs on some hosts, | |
| /// notably x86, so this routine cannot be used if these bits are needed. | |
| inline uint32_t FloatToBits(float Float) { | |
| uint32_t Bits; | |
| static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); | |
| memcpy(&Bits, &Float, sizeof(Float)); | |
| return Bits; | |
| } | |
| /// A and B are either alignments or offsets. Return the minimum alignment that | |
| /// may be assumed after adding the two together. | |
| constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { | |
| // The largest power of 2 that divides both A and B. | |
| // | |
| // Replace "-Value" by "1+~Value" in the following commented code to avoid | |
| // MSVC warning C4146 | |
| // return (A | B) & -(A | B); | |
| return (A | B) & (1 + ~(A | B)); | |
| } | |
| /// Aligns \c Addr to \c Alignment bytes, rounding up. | |
| /// | |
| /// Alignment should be a power of two. This method rounds up, so | |
| /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8. | |
| inline uintptr_t alignAddr(const void *Addr, size_t Alignment) { | |
| assert(Alignment && isPowerOf2_64((uint64_t)Alignment) && | |
| "Alignment is not a power of two!"); | |
| assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr); | |
| return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1)); | |
| } | |
| /// Returns the necessary adjustment for aligning \c Ptr to \c Alignment | |
| /// bytes, rounding up. | |
| inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) { | |
| return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr; | |
| } | |
| /// Returns the next power of two (in 64-bits) that is strictly greater than A. | |
| /// Returns zero on overflow. | |
| inline uint64_t NextPowerOf2(uint64_t A) { | |
| A |= (A >> 1); | |
| A |= (A >> 2); | |
| A |= (A >> 4); | |
| A |= (A >> 8); | |
| A |= (A >> 16); | |
| A |= (A >> 32); | |
| return A + 1; | |
| } | |
| /// Returns the power of two which is less than or equal to the given value. | |
| /// Essentially, it is a floor operation across the domain of powers of two. | |
| inline uint64_t PowerOf2Floor(uint64_t A) { | |
| if (!A) return 0; | |
| return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); | |
| } | |
| /// Returns the power of two which is greater than or equal to the given value. | |
| /// Essentially, it is a ceil operation across the domain of powers of two. | |
| inline uint64_t PowerOf2Ceil(uint64_t A) { | |
| if (!A) | |
| return 0; | |
| return NextPowerOf2(A - 1); | |
| } | |
| /// Returns the next integer (mod 2**64) that is greater than or equal to | |
| /// \p Value and is a multiple of \p Align. \p Align must be non-zero. | |
| /// | |
| /// If non-zero \p Skew is specified, the return value will be a minimal | |
| /// integer that is greater than or equal to \p Value and equal to | |
| /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than | |
| /// \p Align, its value is adjusted to '\p Skew mod \p Align'. | |
| /// | |
| /// Examples: | |
| /// \code | |
| /// alignTo(5, 8) = 8 | |
| /// alignTo(17, 8) = 24 | |
| /// alignTo(~0LL, 8) = 0 | |
| /// alignTo(321, 255) = 510 | |
| /// | |
| /// alignTo(5, 8, 7) = 7 | |
| /// alignTo(17, 8, 1) = 17 | |
| /// alignTo(~0LL, 8, 3) = 3 | |
| /// alignTo(321, 255, 42) = 552 | |
| /// \endcode | |
| inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { | |
| assert(Align != 0u && "Align can't be 0."); | |
| Skew %= Align; | |
| return (Value + Align - 1 - Skew) / Align * Align + Skew; | |
| } | |
| /// Returns the next integer (mod 2**64) that is greater than or equal to | |
| /// \p Value and is a multiple of \c Align. \c Align must be non-zero. | |
| template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { | |
| static_assert(Align != 0u, "Align must be non-zero"); | |
| return (Value + Align - 1) / Align * Align; | |
| } | |
| /// Returns the integer ceil(Numerator / Denominator). | |
| inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { | |
| return alignTo(Numerator, Denominator) / Denominator; | |
| } | |
| /// \c alignTo for contexts where a constant expression is required. | |
| /// \sa alignTo | |
| /// | |
| /// \todo FIXME: remove when \c constexpr becomes really \c constexpr | |
| template <uint64_t Align> | |
| struct AlignTo { | |
| static_assert(Align != 0u, "Align must be non-zero"); | |
| template <uint64_t Value> | |
| struct from_value { | |
| static const uint64_t value = (Value + Align - 1) / Align * Align; | |
| }; | |
| }; | |
| /// Returns the largest uint64_t less than or equal to \p Value and is | |
| /// \p Skew mod \p Align. \p Align must be non-zero | |
| inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { | |
| assert(Align != 0u && "Align can't be 0."); | |
| Skew %= Align; | |
| return (Value - Skew) / Align * Align + Skew; | |
| } | |
| /// Returns the offset to the next integer (mod 2**64) that is greater than | |
| /// or equal to \p Value and is a multiple of \p Align. \p Align must be | |
| /// non-zero. | |
| inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) { | |
| return alignTo(Value, Align) - Value; | |
| } | |
| /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. | |
| /// Requires 0 < B <= 32. | |
| template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { | |
| static_assert(B > 0, "Bit width can't be 0."); | |
| static_assert(B <= 32, "Bit width out of range."); | |
| return int32_t(X << (32 - B)) >> (32 - B); | |
| } | |
| /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. | |
| /// Requires 0 < B < 32. | |
| inline int32_t SignExtend32(uint32_t X, unsigned B) { | |
| assert(B > 0 && "Bit width can't be 0."); | |
| assert(B <= 32 && "Bit width out of range."); | |
| return int32_t(X << (32 - B)) >> (32 - B); | |
| } | |
| /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. | |
| /// Requires 0 < B < 64. | |
| template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { | |
| static_assert(B > 0, "Bit width can't be 0."); | |
| static_assert(B <= 64, "Bit width out of range."); | |
| return int64_t(x << (64 - B)) >> (64 - B); | |
| } | |
| /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. | |
| /// Requires 0 < B < 64. | |
| inline int64_t SignExtend64(uint64_t X, unsigned B) { | |
| assert(B > 0 && "Bit width can't be 0."); | |
| assert(B <= 64 && "Bit width out of range."); | |
| return int64_t(X << (64 - B)) >> (64 - B); | |
| } | |
| /// Subtract two unsigned integers, X and Y, of type T and return the absolute | |
| /// value of the result. | |
| template <typename T> | |
| typename std::enable_if<std::is_unsigned<T>::value, T>::type | |
| AbsoluteDifference(T X, T Y) { | |
| return std::max(X, Y) - std::min(X, Y); | |
| } | |
| /// Add two unsigned integers, X and Y, of type T. Clamp the result to the | |
| /// maximum representable value of T on overflow. ResultOverflowed indicates if | |
| /// the result is larger than the maximum representable value of type T. | |
| template <typename T> | |
| typename std::enable_if<std::is_unsigned<T>::value, T>::type | |
| SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { | |
| bool Dummy; | |
| bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; | |
| // Hacker's Delight, p. 29 | |
| T Z = X + Y; | |
| Overflowed = (Z < X || Z < Y); | |
| if (Overflowed) | |
| return std::numeric_limits<T>::max(); | |
| else | |
| return Z; | |
| } | |
| /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the | |
| /// maximum representable value of T on overflow. ResultOverflowed indicates if | |
| /// the result is larger than the maximum representable value of type T. | |
| template <typename T> | |
| typename std::enable_if<std::is_unsigned<T>::value, T>::type | |
| SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { | |
| bool Dummy; | |
| bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; | |
| // Hacker's Delight, p. 30 has a different algorithm, but we don't use that | |
| // because it fails for uint16_t (where multiplication can have undefined | |
| // behavior due to promotion to int), and requires a division in addition | |
| // to the multiplication. | |
| Overflowed = false; | |
| // Log2(Z) would be either Log2Z or Log2Z + 1. | |
| // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z | |
| // will necessarily be less than Log2Max as desired. | |
| int Log2Z = Log2_64(X) + Log2_64(Y); | |
| const T Max = std::numeric_limits<T>::max(); | |
| int Log2Max = Log2_64(Max); | |
| if (Log2Z < Log2Max) { | |
| return X * Y; | |
| } | |
| if (Log2Z > Log2Max) { | |
| Overflowed = true; | |
| return Max; | |
| } | |
| // We're going to use the top bit, and maybe overflow one | |
| // bit past it. Multiply all but the bottom bit then add | |
| // that on at the end. | |
| T Z = (X >> 1) * Y; | |
| if (Z & ~(Max >> 1)) { | |
| Overflowed = true; | |
| return Max; | |
| } | |
| Z <<= 1; | |
| if (X & 1) | |
| return SaturatingAdd(Z, Y, ResultOverflowed); | |
| return Z; | |
| } | |
| /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to | |
| /// the product. Clamp the result to the maximum representable value of T on | |
| /// overflow. ResultOverflowed indicates if the result is larger than the | |
| /// maximum representable value of type T. | |
| template <typename T> | |
| typename std::enable_if<std::is_unsigned<T>::value, T>::type | |
| SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { | |
| bool Dummy; | |
| bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; | |
| T Product = SaturatingMultiply(X, Y, &Overflowed); | |
| if (Overflowed) | |
| return Product; | |
| return SaturatingAdd(A, Product, &Overflowed); | |
| } | |
| /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. | |
| extern const float huge_valf; | |
| } // End llvm namespace | |
| #endif |