blob: bda88a3ee54a6853e3162476be1d2378dd10e9ef [file] [log] [blame]
#include <ATen/ATen.h>
#include <ATen/SparseTensorImpl.h>
#include <ATen/InitialTensorOptions.h>
#include <ATen/core/LegacyTypeDispatch.h>
namespace at {
namespace {
DeviceType sparseTensorSetToDeviceType(DispatchKeySet key_set) {
auto k = c10::highestPriorityBackendTypeId(key_set);
TORCH_CHECK(c10::toFunctionalityKey(k) == DispatchKey::Sparse,
"cannot create sparse tensor with non sparse dispatch key ", k);
return c10::dispatchKeyToDeviceType(k);
}
}
// An empty dense tensor defaults to a 1-dimensional tensor of size [0]
// (recall, it is not a 0-dimensional tensor, because such a tensor would
// a scalar and have one element)
//
// Thus, an empty sparse tensor should be a 1-dimensional tensor of size [0].
// Furthermore, we have dim == sparse_dim + dense_dim; since this is a sparse
// tensor, let us say that an empty sparse tensor has sparse_dim == 1 and
// dense_dim == 0. (There is a degree of freedom here, but given that this
// is a sparse dimension, it seems reasonable to demand that sparse_dim > 0).
//
// This means that we allocate a [1,0] size indices tensor and a [0] size
// values tensor for such an empty tensor.
SparseTensorImpl::SparseTensorImpl(at::DispatchKeySet key_set, const caffe2::TypeMeta data_type)
: SparseTensorImpl(key_set, data_type
, at::empty({1, 0}, at::initialTensorOptions().device(sparseTensorSetToDeviceType(key_set)).dtype(ScalarType::Long))
, at::empty({0}, at::initialTensorOptions().device(sparseTensorSetToDeviceType(key_set)).dtype(data_type))) {}
SparseTensorImpl::SparseTensorImpl(at::DispatchKeySet key_set, const caffe2::TypeMeta data_type, at::Tensor indices, at::Tensor values)
: TensorImpl(key_set, data_type, values.device())
, sparse_dim_(1)
, indices_(std::move(indices))
, values_(std::move(values)) {
// we proxy to this constructor so we can initialize the device correctly, but really only indices/values of this shape are allowed.
AT_ASSERT(indices_.sizes() == IntArrayRef({1, 0}));
AT_ASSERT(values_.sizes() == IntArrayRef({0}));
AT_ASSERT(values_.device() == indices_.device());
AT_ASSERT(values_.device() == device());
is_non_overlapping_and_dense_ = false;
set_storage_access_should_throw();
set_custom_sizes_strides(SizesStridesPolicy::CustomStrides);
}
// Destructor doesn't call release_resources because it's
// unnecessary; don't forget to change that if needed!
void SparseTensorImpl::release_resources() {
TensorImpl::release_resources();
values_.reset();
indices_.reset();
}
void SparseTensorImpl::set_size(int64_t dim, int64_t new_size) {
AT_ERROR("sparse tensors do not have set_size");
}
void SparseTensorImpl::set_stride(int64_t dim, int64_t new_stride) {
AT_ERROR("sparse tensors do not have set_stride");
}
void SparseTensorImpl::set_storage_offset(int64_t storage_offset) {
AT_ERROR("sparse tensors do not have set_storage_offset");
}
#ifdef DEBUG
bool SparseTensorImpl::has_storage() const {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!storage_, "SparseTensorImpl assumes that storage_ is never set");
return false;
}
#endif
const char* SparseTensorImpl::tensorimpl_type_name() const {
return "SparseTensorImpl";
}
void SparseTensorImpl::set_indices_and_values_unsafe(const Tensor& indices, const Tensor& values) {
TORCH_CHECK(allow_tensor_metadata_change(), "set_indices_and_values_unsafe ", err_msg_tensor_metadata_change_not_allowed);
TORCH_CHECK(!indices.is_sparse(), "expected indices to be a dense tensor, but got indices of layout ", indices.layout());
TORCH_CHECK(!values.is_sparse(), "expected values to be a dense tensor, but got values of layout ", values.layout());
TORCH_CHECK(values.device().type() == device().type(), "device type of values (", values.device().type(), ") must match device type of device().type()", device().type(), ")");
TORCH_CHECK(values.scalar_type() == typeMetaToScalarType(dtype()), "dtype of values (", values.scalar_type(), ") must match dtype of sparse tensor (", typeMetaToScalarType(dtype()), ")");
TORCH_CHECK(indices.scalar_type() == kLong, "indices must be an int64 tensor");
TORCH_CHECK(indices.options().backend() == values.options().backend(), "backend of indices (", indices.options().backend(), ") must match backend of values (", values.options().backend(), ")");
TORCH_CHECK(!indices.is_cuda() || indices.get_device() == values.get_device(), "device of indices (", indices.get_device(), ") must match device of values (", values.get_device(), ")");
TORCH_CHECK(indices.dim() == 2, "indices must be sparse_dim x nnz, but got: ", indices.sym_sizes());
TORCH_CHECK(indices.sym_size(1) == values.sym_size(0), "indices and values must have same nnz, but got nnz from indices: ", indices.sym_size(1), ", nnz from values: ", values.sym_size(0));
TORCH_CHECK(indices.sym_size(0) == sparse_dim_, "indices has incorrect first dimension, expected ", sparse_dim_, ", got ", indices.sym_size(0));
TORCH_CHECK(values.dim() == dense_dim_ + 1, "values has incorrect number of dimensions, expected ", dense_dim_ + 1, ", got ", values.dim());
auto dense_size_original = sym_sizes().slice(sparse_dim_);
std::vector<c10::SymInt> expected_values_size_vec = {values.sym_size(0)};
expected_values_size_vec.insert(expected_values_size_vec.end(), dense_size_original.begin(), dense_size_original.end());
SymIntArrayRef expected_values_size(expected_values_size_vec);
auto new_values_size = values.sym_sizes();
TORCH_CHECK(
std::equal(expected_values_size.begin(), expected_values_size.end(), new_values_size.begin()),
"values has incorrect size, expected ", expected_values_size, ", got ", new_values_size
);
indices_ = indices;
values_ = values;
AT_ASSERT(device() == values_.device());
AT_ASSERT(values_.device() == indices_.device());
coalesced_ = TORCH_GUARD_SIZE_OBLIVIOUS(sym_nnz().sym_lt(2));
}
} // namespace at