| #include <ATen/ATen.h> |
| #include <ATen/SparseTensorImpl.h> |
| #include <ATen/InitialTensorOptions.h> |
| #include <ATen/core/LegacyTypeDispatch.h> |
| |
| namespace at { |
| |
| namespace { |
| DeviceType sparseTensorSetToDeviceType(DispatchKeySet key_set) { |
| auto k = c10::highestPriorityBackendTypeId(key_set); |
| TORCH_CHECK(c10::toFunctionalityKey(k) == DispatchKey::Sparse, |
| "cannot create sparse tensor with non sparse dispatch key ", k); |
| return c10::dispatchKeyToDeviceType(k); |
| } |
| } |
| |
| |
| // An empty dense tensor defaults to a 1-dimensional tensor of size [0] |
| // (recall, it is not a 0-dimensional tensor, because such a tensor would |
| // a scalar and have one element) |
| // |
| // Thus, an empty sparse tensor should be a 1-dimensional tensor of size [0]. |
| // Furthermore, we have dim == sparse_dim + dense_dim; since this is a sparse |
| // tensor, let us say that an empty sparse tensor has sparse_dim == 1 and |
| // dense_dim == 0. (There is a degree of freedom here, but given that this |
| // is a sparse dimension, it seems reasonable to demand that sparse_dim > 0). |
| // |
| // This means that we allocate a [1,0] size indices tensor and a [0] size |
| // values tensor for such an empty tensor. |
| SparseTensorImpl::SparseTensorImpl(at::DispatchKeySet key_set, const caffe2::TypeMeta data_type) |
| : SparseTensorImpl(key_set, data_type |
| , at::empty({1, 0}, at::initialTensorOptions().device(sparseTensorSetToDeviceType(key_set)).dtype(ScalarType::Long)) |
| , at::empty({0}, at::initialTensorOptions().device(sparseTensorSetToDeviceType(key_set)).dtype(data_type))) {} |
| |
| SparseTensorImpl::SparseTensorImpl(at::DispatchKeySet key_set, const caffe2::TypeMeta data_type, at::Tensor indices, at::Tensor values) |
| : TensorImpl(key_set, data_type, values.device()) |
| , sparse_dim_(1) |
| , indices_(std::move(indices)) |
| , values_(std::move(values)) { |
| // we proxy to this constructor so we can initialize the device correctly, but really only indices/values of this shape are allowed. |
| AT_ASSERT(indices_.sizes() == IntArrayRef({1, 0})); |
| AT_ASSERT(values_.sizes() == IntArrayRef({0})); |
| AT_ASSERT(values_.device() == indices_.device()); |
| AT_ASSERT(values_.device() == device()); |
| |
| is_non_overlapping_and_dense_ = false; |
| set_storage_access_should_throw(); |
| set_custom_sizes_strides(SizesStridesPolicy::CustomStrides); |
| } |
| |
| // Destructor doesn't call release_resources because it's |
| // unnecessary; don't forget to change that if needed! |
| void SparseTensorImpl::release_resources() { |
| TensorImpl::release_resources(); |
| values_.reset(); |
| indices_.reset(); |
| } |
| |
| void SparseTensorImpl::set_size(int64_t dim, int64_t new_size) { |
| AT_ERROR("sparse tensors do not have set_size"); |
| } |
| void SparseTensorImpl::set_stride(int64_t dim, int64_t new_stride) { |
| AT_ERROR("sparse tensors do not have set_stride"); |
| } |
| void SparseTensorImpl::set_storage_offset(int64_t storage_offset) { |
| AT_ERROR("sparse tensors do not have set_storage_offset"); |
| } |
| #ifdef DEBUG |
| bool SparseTensorImpl::has_storage() const { |
| TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!storage_, "SparseTensorImpl assumes that storage_ is never set"); |
| return false; |
| } |
| #endif |
| |
| const char* SparseTensorImpl::tensorimpl_type_name() const { |
| return "SparseTensorImpl"; |
| } |
| |
| void SparseTensorImpl::set_indices_and_values_unsafe(const Tensor& indices, const Tensor& values) { |
| TORCH_CHECK(allow_tensor_metadata_change(), "set_indices_and_values_unsafe ", err_msg_tensor_metadata_change_not_allowed); |
| |
| TORCH_CHECK(!indices.is_sparse(), "expected indices to be a dense tensor, but got indices of layout ", indices.layout()); |
| TORCH_CHECK(!values.is_sparse(), "expected values to be a dense tensor, but got values of layout ", values.layout()); |
| |
| TORCH_CHECK(values.device().type() == device().type(), "device type of values (", values.device().type(), ") must match device type of device().type()", device().type(), ")"); |
| TORCH_CHECK(values.scalar_type() == typeMetaToScalarType(dtype()), "dtype of values (", values.scalar_type(), ") must match dtype of sparse tensor (", typeMetaToScalarType(dtype()), ")"); |
| TORCH_CHECK(indices.scalar_type() == kLong, "indices must be an int64 tensor"); |
| TORCH_CHECK(indices.options().backend() == values.options().backend(), "backend of indices (", indices.options().backend(), ") must match backend of values (", values.options().backend(), ")"); |
| TORCH_CHECK(!indices.is_cuda() || indices.get_device() == values.get_device(), "device of indices (", indices.get_device(), ") must match device of values (", values.get_device(), ")"); |
| |
| TORCH_CHECK(indices.dim() == 2, "indices must be sparse_dim x nnz, but got: ", indices.sym_sizes()); |
| TORCH_CHECK(indices.sym_size(1) == values.sym_size(0), "indices and values must have same nnz, but got nnz from indices: ", indices.sym_size(1), ", nnz from values: ", values.sym_size(0)); |
| TORCH_CHECK(indices.sym_size(0) == sparse_dim_, "indices has incorrect first dimension, expected ", sparse_dim_, ", got ", indices.sym_size(0)); |
| TORCH_CHECK(values.dim() == dense_dim_ + 1, "values has incorrect number of dimensions, expected ", dense_dim_ + 1, ", got ", values.dim()); |
| |
| auto dense_size_original = sym_sizes().slice(sparse_dim_); |
| std::vector<c10::SymInt> expected_values_size_vec = {values.sym_size(0)}; |
| expected_values_size_vec.insert(expected_values_size_vec.end(), dense_size_original.begin(), dense_size_original.end()); |
| SymIntArrayRef expected_values_size(expected_values_size_vec); |
| auto new_values_size = values.sym_sizes(); |
| TORCH_CHECK( |
| std::equal(expected_values_size.begin(), expected_values_size.end(), new_values_size.begin()), |
| "values has incorrect size, expected ", expected_values_size, ", got ", new_values_size |
| ); |
| |
| indices_ = indices; |
| values_ = values; |
| AT_ASSERT(device() == values_.device()); |
| AT_ASSERT(values_.device() == indices_.device()); |
| |
| coalesced_ = TORCH_GUARD_SIZE_OBLIVIOUS(sym_nnz().sym_lt(2)); |
| } |
| |
| |
| } // namespace at |