blob: 74fb6fe2b9ba61060ccfaf22f8514ea9f6eca806 [file] [log] [blame]
#include <gtest/gtest.h>
#include <torch/data.h>
#include <torch/data/detail/sequencers.h>
#include <torch/serialize.h>
#include <torch/tensor.h>
#include <test/cpp/api/support.h>
#include <ATen/core/ArrayRef.h>
#include <chrono>
#include <future>
#include <iostream>
#include <limits>
#include <stdexcept>
#include <string>
#include <thread>
#include <vector>
using namespace torch::data; // NOLINT
const std::chrono::milliseconds kMillisecond(1);
struct DummyDataset : datasets::Dataset<DummyDataset, int> {
int get(size_t index) override {
return 1 + index;
}
size_t size() const override {
return 100;
}
};
TEST(DataTest, DatasetCallsGetCorrectly) {
DummyDataset d;
std::vector<int> batch = d.get_batch({0, 1, 2, 3, 4});
std::vector<int> expected = {1, 2, 3, 4, 5};
ASSERT_EQ(batch, expected);
}
TEST(DataTest, TransformCallsGetApplyCorrectly) {
struct T : transforms::Transform<int, std::string> {
std::string apply(int input) override {
return std::to_string(input);
}
};
auto d = DummyDataset{}.map(T{});
std::vector<std::string> batch = d.get_batch({0, 1, 2, 3, 4});
std::vector<std::string> expected = {"1", "2", "3", "4", "5"};
ASSERT_EQ(batch, expected);
}
struct InfiniteStreamDataset
: datasets::BatchDataset<InfiniteStreamDataset, std::vector<int>> {
std::vector<int> get_batch(torch::ArrayRef<size_t> batch_size) override {
AT_ASSERT(batch_size.size() == 1);
std::vector<int> batch(batch_size.front());
for (auto& i : batch) {
i = counter++;
}
return batch;
}
size_t size() const override {
return std::numeric_limits<size_t>::max();
}
size_t counter = 0;
};
struct BatchSizeSampler : samplers::Sampler {
void reset() override {}
c10::optional<std::vector<size_t>> next(size_t batch_size) override {
return {{batch_size}};
}
void save(torch::serialize::OutputArchive& archive) const override {}
void load(torch::serialize::InputArchive& archive) override {}
};
TEST(DataTest, InfiniteStreamDataset) {
const size_t kBatchSize = 13;
{
BatchSizeSampler sampler;
ASSERT_EQ(sampler.next(kBatchSize).value().size(), 1);
ASSERT_EQ(sampler.next(kBatchSize).value().front(), kBatchSize);
}
auto dataset = InfiniteStreamDataset().map(
transforms::Lambda<int>([](int x) { return x + 1; }));
auto data_loader = torch::data::make_data_loader(
std::move(dataset),
DataLoaderOptions().batch_size(kBatchSize),
BatchSizeSampler{});
auto iterator = data_loader->begin();
for (size_t i = 0; i < 3; ++i, ++iterator) {
ASSERT_NE(iterator, data_loader->end());
std::vector<int> batch = *iterator;
ASSERT_EQ(batch.size(), kBatchSize);
for (size_t j = 0; j < kBatchSize; ++j) {
ASSERT_EQ(batch.at(j), 1 + (i * kBatchSize) + j);
}
}
}
TEST(DataTest, NoSequencerIsIdentity) {
using namespace torch::data::detail::sequencers; // NOLINT
NoSequencer<int> no_sequencer;
const auto value = no_sequencer.next([] { return 5; }).value();
ASSERT_EQ(value, 5);
}
TEST(DataTest, OrderedSequencerIsSetUpWell) {
using namespace torch::data::detail::sequencers; // NOLINT
struct S {
size_t sequence_number;
};
const size_t kMaxJobs = 5;
OrderedSequencer<S> sequencer(kMaxJobs);
ASSERT_EQ(sequencer.next_sequence_number_, 0);
ASSERT_EQ(sequencer.buffer_.size(), kMaxJobs);
}
TEST(DataTest, OrderedSequencerReOrdersValues) {
using namespace torch::data::detail::sequencers; // NOLINT
struct S {
size_t sequence_number;
};
const size_t kMaxJobs = 5;
OrderedSequencer<S> sequencer(kMaxJobs);
std::vector<size_t> v = {0, 2, 4, 3, 1};
size_t index = 0;
auto getter = [&v, &index]() { return S{v.at(index++)}; };
// Let's say the sequence number matches for the first one, then it should
// return immediately.
const auto first = sequencer.next(getter);
ASSERT_EQ(first.value().sequence_number, 0);
ASSERT_EQ(index, 1);
// Now it should call the getter until it gets the next value.
ASSERT_EQ(1, sequencer.next(getter).value().sequence_number);
ASSERT_EQ(index, 5);
// The next three should come in order.
for (size_t i = 2; i <= 4; ++i) {
// New value doesn't matter. In fact, it shouldn't be accessed.
ASSERT_EQ(i, sequencer.next(getter).value().sequence_number);
// The index doesn't change.
ASSERT_EQ(index, 5);
}
}
TEST(DataTest, BatchLambdaAppliesFunctionToBatch) {
using InputBatch = std::vector<int>;
using OutputBatch = std::string;
DummyDataset d;
auto e = d.map(transforms::BatchLambda<InputBatch, OutputBatch>(
[](std::vector<int> input) {
return std::to_string(std::accumulate(input.begin(), input.end(), 0));
}));
ASSERT_EQ(e.get_batch({1, 2, 3, 4, 5}), std::string("20"));
}
TEST(DataTest, LambdaAppliesFunctionToExample) {
auto d = DummyDataset().map(transforms::Lambda<int, std::string>(
static_cast<std::string (*)(int)>(std::to_string)));
std::vector<std::string> expected = {"1", "2", "3", "4", "5"};
ASSERT_EQ(d.get_batch({0, 1, 2, 3, 4}), expected);
}
TEST(DataTest, CollateReducesBatch) {
auto d =
DummyDataset().map(transforms::Collate<int>([](std::vector<int> input) {
return std::accumulate(input.begin(), input.end(), 0);
}));
ASSERT_EQ(d.get_batch({1, 2, 3, 4, 5}), 20);
}
TEST(DataTest, CollationReducesBatch) {
struct Summer : transforms::Collation<int> {
int apply_batch(std::vector<int> input) override {
return std::accumulate(input.begin(), input.end(), 0);
}
};
auto d = DummyDataset().map(Summer{});
ASSERT_EQ(d.get_batch({1, 2, 3, 4, 5}), 20);
}
TEST(DataTest, SequentialSamplerReturnsIndicesInOrder) {
samplers::SequentialSampler sampler(10);
ASSERT_EQ(sampler.next(3).value(), std::vector<size_t>({0, 1, 2}));
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({3, 4, 5, 6, 7}));
ASSERT_EQ(sampler.next(2).value(), std::vector<size_t>({8, 9}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SequentialSamplerReturnsLessValuesForLastBatch) {
samplers::SequentialSampler sampler(5);
ASSERT_EQ(sampler.next(3).value(), std::vector<size_t>({0, 1, 2}));
ASSERT_EQ(sampler.next(100).value(), std::vector<size_t>({3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SequentialSamplerResetsWell) {
samplers::SequentialSampler sampler(5);
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({0, 1, 2, 3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset();
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({0, 1, 2, 3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, CanSaveAndLoadSequentialSampler) {
{
samplers::SequentialSampler a(10);
ASSERT_EQ(a.index(), 0);
std::stringstream stream;
torch::save(a, stream);
samplers::SequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 0);
}
{
samplers::SequentialSampler a(10);
a.next(3);
a.next(4);
ASSERT_EQ(a.index(), 7);
std::stringstream stream;
torch::save(a, stream);
samplers::SequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 7);
}
}
TEST(DataTest, RandomSamplerReturnsIndicesInCorrectRange) {
samplers::RandomSampler sampler(10);
std::vector<size_t> indices = sampler.next(3).value();
for (auto i : indices) {
ASSERT_GE(i, 0);
ASSERT_LT(i, 10);
}
indices = sampler.next(5).value();
for (auto i : indices) {
ASSERT_GE(i, 0);
ASSERT_LT(i, 10);
}
indices = sampler.next(2).value();
for (auto i : indices) {
ASSERT_GE(i, 0);
ASSERT_LT(i, 10);
}
ASSERT_FALSE(sampler.next(10).has_value());
}
TEST(DataTest, RandomSamplerReturnsLessValuesForLastBatch) {
samplers::RandomSampler sampler(5);
ASSERT_EQ(sampler.next(3).value().size(), 3);
ASSERT_EQ(sampler.next(100).value().size(), 2);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, RandomSamplerResetsWell) {
samplers::RandomSampler sampler(5);
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset();
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SavingAndLoadingRandomSamplerYieldsSameSequence) {
{
samplers::RandomSampler a(10);
std::stringstream stream;
torch::save(a, stream);
samplers::RandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(a.next(10).value(), b.next(10).value());
}
{
samplers::RandomSampler a(10);
a.next(3);
ASSERT_EQ(a.index(), 3);
std::stringstream stream;
torch::save(a, stream);
samplers::RandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 3);
auto b_sequence = b.next(10).value();
ASSERT_EQ(b_sequence.size(), 7);
ASSERT_EQ(a.next(10).value(), b_sequence);
}
}
TEST(DataTest, TensorDatasetConstructsFromSingleTensor) {
datasets::TensorDataset dataset(torch::eye(5));
ASSERT_TRUE(
torch::tensor({0, 0, 1, 0, 0}, torch::kFloat32).allclose(dataset.get(2)));
}
TEST(DataTest, TensorDatasetConstructsFromInitializerListOfTensors) {
std::vector<torch::Tensor> vector = torch::eye(5).chunk(5);
datasets::TensorDataset dataset(vector);
ASSERT_TRUE(
torch::tensor({0, 0, 1, 0, 0}, torch::kFloat32).allclose(dataset.get(2)));
}
TEST(DataTest, StackTransformWorksForExample) {
struct D : public datasets::Dataset<D> {
Example<> get(size_t index) override {
return {tensor[index], 1 + tensor[index]};
}
size_t size() const override {
return tensor.size(0);
}
torch::Tensor tensor{torch::eye(4)};
};
auto d = D().map(transforms::Stack<Example<>>());
Example<> first = d.get_batch({0, 1});
ASSERT_TRUE(first.data.allclose(torch::eye(4).slice(/*dim=*/0, 0, 2)));
ASSERT_TRUE(first.target.allclose(1 + torch::eye(4).slice(/*dim=*/0, 0, 2)));
Example<> second = d.get_batch({2, 3});
ASSERT_TRUE(second.data.allclose(torch::eye(4).slice(/*dim=*/0, 2, 4)));
ASSERT_TRUE(second.target.allclose(1 + torch::eye(4).slice(/*dim=*/0, 2, 4)));
}
TEST(DataTest, StackTransformWorksForTensorExample) {
auto d = datasets::TensorDataset(torch::eye(4))
.map(transforms::Stack<TensorExample>());
TensorExample first = d.get_batch({0, 1});
ASSERT_TRUE(first.data.allclose(torch::eye(4).slice(/*dim=*/0, 0, 2)));
TensorExample second = d.get_batch({2, 3});
ASSERT_TRUE(second.data.allclose(torch::eye(4).slice(/*dim=*/0, 2, 4)));
}
// Template classes cannot be nested in functions.
template <typename Target>
struct T : transforms::TensorTransform<Target> {
torch::Tensor operator()(torch::Tensor input) override {
return input * 2;
}
};
struct TensorStringDataset
: datasets::
Dataset<TensorStringDataset, Example<torch::Tensor, std::string>> {
Example<torch::Tensor, std::string> get(size_t index) override {
return {torch::tensor(static_cast<double>(index)), std::to_string(index)};
}
size_t size() const override {
return 100;
}
};
TEST(DataTest, TensorTransformWorksForAnyTargetType) {
auto d = TensorStringDataset().map(T<std::string>{});
std::vector<Example<torch::Tensor, std::string>> batch = d.get_batch({1, 2});
ASSERT_EQ(batch.size(), 2);
ASSERT_TRUE(batch[0].data.allclose(torch::tensor(2.0)));
ASSERT_EQ(batch[0].target, "1");
ASSERT_TRUE(batch[1].data.allclose(torch::tensor(4.0)));
ASSERT_EQ(batch[1].target, "2");
}
TEST(DataTest, TensorLambdaWorksforAnyTargetType) {
auto d = TensorStringDataset().map(transforms::TensorLambda<std::string>(
[](torch::Tensor input) { return input * 2; }));
std::vector<Example<torch::Tensor, std::string>> batch = d.get_batch({1, 2});
ASSERT_EQ(batch.size(), 2);
ASSERT_TRUE(batch[0].data.allclose(torch::tensor(2.0)));
ASSERT_EQ(batch[0].target, "1");
ASSERT_TRUE(batch[1].data.allclose(torch::tensor(4.0)));
ASSERT_EQ(batch[1].target, "2");
}
TEST(DataTest, QueuePushAndPopFromSameThread) {
torch::data::detail::Queue<int> queue;
queue.push(1);
queue.push(2);
ASSERT_EQ(queue.pop(), 1);
ASSERT_EQ(queue.pop(), 2);
}
TEST(DataTest, QueuePopWithTimeoutThrowsUponTimeout) {
torch::data::detail::Queue<int> queue;
ASSERT_THROWS_WITH(
queue.pop(10 * kMillisecond),
"Timeout in DataLoader queue while waiting for next batch "
"(timeout was 10 ms)");
}
TEST(DataTest, QueuePushAndPopFromDifferentThreads) {
using torch::data::detail::Queue;
// First test: push first and the pop in thread.
{
Queue<int> queue;
queue.push(1);
auto future =
std::async(std::launch::async, [&queue] { return queue.pop(); });
ASSERT_EQ(future.get(), 1);
}
// Second test: attempt to pop first (and block), then push.
{
Queue<int> queue;
std::thread thread([&queue] {
std::this_thread::sleep_for(20 * kMillisecond);
queue.push(123);
});
ASSERT_EQ(queue.pop(), 123);
thread.join();
}
}
TEST(DataTest, QueueClearEmptiesTheQueue) {
torch::data::detail::Queue<int> queue;
queue.push(1);
queue.push(2);
queue.push(3);
ASSERT_EQ(queue.clear(), 3);
ASSERT_THROWS_WITH(queue.pop(1 * kMillisecond), "Timeout");
}
TEST(DataTest, DataShuttleCanPushAndPopJob) {
torch::data::detail::DataShuttle<int, int> shuttle;
shuttle.push_job(1);
shuttle.push_job(2);
ASSERT_EQ(shuttle.pop_job(), 1);
ASSERT_EQ(shuttle.pop_job(), 2);
}
TEST(DataTest, DataShuttleCanPushAndPopResult) {
torch::data::detail::DataShuttle<int, int> shuttle;
// pop_result() will only attempt to pop if there was a push_job() first.
shuttle.push_job(1);
shuttle.push_job(2);
shuttle.pop_job();
shuttle.push_result(1);
ASSERT_EQ(shuttle.pop_result().value(), 1);
shuttle.pop_job();
shuttle.push_result(2);
ASSERT_EQ(shuttle.pop_result().value(), 2);
}
TEST(DataTest, DataShuttlePopResultReturnsNulloptWhenNoJobsInFlight) {
torch::data::detail::DataShuttle<int, int> shuttle;
ASSERT_FALSE(shuttle.pop_result().has_value());
shuttle.push_job(1);
shuttle.pop_job();
shuttle.push_result(1);
ASSERT_EQ(shuttle.pop_result().value(), 1);
ASSERT_FALSE(shuttle.pop_result().has_value());
ASSERT_FALSE(shuttle.pop_result().has_value());
}
TEST(DataTest, DataShuttleDrainMeansPopResultReturnsNullopt) {
torch::data::detail::DataShuttle<int, int> shuttle;
shuttle.push_job(1);
shuttle.push_result(1);
shuttle.drain();
ASSERT_FALSE(shuttle.pop_result().has_value());
}
TEST(DataTest, DataShuttlePopResultTimesOut) {
torch::data::detail::DataShuttle<int, int> shuttle;
shuttle.push_job(1);
ASSERT_THROWS_WITH(shuttle.pop_result(10 * kMillisecond), "Timeout");
}
TEST(DataLoaderTest, DataLoaderOptionsDefaultAsExpected) {
DataLoaderOptions partial_options;
FullDataLoaderOptions full_options(partial_options);
ASSERT_EQ(full_options.batch_size, 1);
ASSERT_FALSE(full_options.drop_last);
ASSERT_EQ(full_options.workers, 0);
ASSERT_EQ(full_options.max_jobs, 0);
ASSERT_FALSE(full_options.timeout.has_value());
ASSERT_TRUE(full_options.enforce_ordering);
}
TEST(DataLoaderTest, DataLoaderOptionsCoalesceOptionalValues) {
auto partial_options = DataLoaderOptions(32).workers(10);
FullDataLoaderOptions full_options(partial_options);
ASSERT_EQ(full_options.batch_size, 32);
ASSERT_EQ(full_options.max_jobs, 2 * 10);
}
TEST(DataLoaderTest, IteratorsCompareEqualToThemselves) {
auto data_loader = torch::data::make_data_loader(DummyDataset(), 32);
auto begin = data_loader->begin();
ASSERT_EQ(begin, begin);
auto end = data_loader->end();
ASSERT_EQ(end, end);
}
TEST(DataLoaderTest, ValidIteratorsCompareUnequalToEachOther) {
auto data_loader = torch::data::make_data_loader(DummyDataset(), 32);
auto i = data_loader->begin();
auto j = data_loader->begin();
ASSERT_NE(i, j);
++j;
ASSERT_NE(i, j);
}
TEST(DataLoaderTest, SentinelIteratorsCompareEqualToEachOther) {
auto data_loader = torch::data::make_data_loader(DummyDataset(), 32);
auto i = data_loader->end();
auto j = data_loader->end();
ASSERT_EQ(i, j);
}
TEST(DataLoaderTest, IteratorsCompareEqualToSentinelWhenExhausted) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(dataset, dataset.size() / 4);
auto i = data_loader->begin();
auto end = data_loader->end();
ASSERT_NE(i, end);
++i;
ASSERT_NE(i, end);
++i;
ASSERT_NE(i, end);
++i;
ASSERT_NE(i, end);
++i;
ASSERT_EQ(i, end);
}
TEST(DataLoaderTest, IteratorsShareState) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(dataset, dataset.size() / 2);
auto i = data_loader->begin();
auto j = i;
auto end = data_loader->end();
ASSERT_NE(i, end);
ASSERT_NE(j, end);
++i;
ASSERT_NE(i, end);
ASSERT_NE(j, end);
++j;
ASSERT_EQ(i, end);
ASSERT_EQ(j, end);
}
TEST(DataLoaderTest, CanDereferenceIteratorMultipleTimes) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(dataset, dataset.size());
auto i = data_loader->begin();
ASSERT_NE(i, data_loader->end());
ASSERT_EQ(i->size(), dataset.size());
ASSERT_NE(i, data_loader->end());
ASSERT_EQ(i->size(), dataset.size());
ASSERT_NE(i, data_loader->end());
ASSERT_EQ(i->size(), dataset.size());
ASSERT_EQ(++i, data_loader->end());
}
TEST(DataLoaderTest, CallingBeginWhileOtherIteratorIsInFlightThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, DataLoaderOptions(1).workers(2));
auto i = data_loader->begin();
ASSERT_THROWS_WITH(
data_loader->begin(),
"Attempted to get a new DataLoader iterator "
"while another iterator is not yet exhausted");
}
TEST(DataLoaderTest, IncrementingExhaustedValidIteratorThrows) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(dataset, dataset.size());
auto i = data_loader->begin();
ASSERT_NO_THROW(++i);
ASSERT_THROWS_WITH(++i, "Attempted to increment iterator past the end");
}
TEST(DataLoaderTest, DereferencingExhaustedValidIteratorThrows) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(dataset, dataset.size());
auto i = data_loader->begin();
ASSERT_NO_THROW(++i);
ASSERT_THROWS_WITH(
*i, "Attempted to dereference iterator that was past the end");
}
TEST(DataLoaderTest, IncrementingSentinelIteratorThrows) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(dataset, dataset.size());
auto i = data_loader->end();
ASSERT_THROWS_WITH(
++i,
"Incrementing the DataLoader's past-the-end iterator is not allowed");
}
TEST(DataLoaderTest, DereferencingSentinelIteratorThrows) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(dataset, dataset.size());
auto i = data_loader->end();
ASSERT_THROWS_WITH(
*i,
"Dereferencing the DataLoader's past-the-end iterator is not allowed");
}
TEST(DataLoaderTest, ThrowsWhenBatchSizeExceedsDatasetSize) {
DummyDataset dataset;
ASSERT_THROWS_WITH(
torch::data::make_data_loader(dataset, dataset.size() + 1),
"Batch size (was 101) must not be larger "
"than the dataset size (was 100)");
}
TEST(DataLoaderTest, YieldsCorrectBatchSize) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(dataset, 25);
auto iterator = data_loader->begin();
ASSERT_EQ(iterator->size(), 25);
ASSERT_EQ((++iterator)->size(), 25);
ASSERT_EQ((++iterator)->size(), 25);
ASSERT_EQ((++iterator)->size(), 25);
ASSERT_EQ(++iterator, data_loader->end());
}
TEST(
DataLoaderTest,
ReturnsLastBatchWhenSmallerThanBatchSizeWhenDropLastIsFalse) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(33).drop_last(false));
auto iterator = data_loader->begin();
ASSERT_EQ(iterator->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ((++iterator)->size(), 1);
ASSERT_EQ(++iterator, data_loader->end());
}
TEST(
DataLoaderTest,
DoesNotReturnLastBatchWhenSmallerThanBatchSizeWhenDropLastIsTrue) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(33).drop_last(true));
auto iterator = data_loader->begin();
ASSERT_EQ(iterator->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ(++iterator, data_loader->end());
}
TEST(DataLoaderTest, RespectsTimeout) {
struct Baton {
std::condition_variable cv;
std::mutex mutex;
};
struct D : datasets::Dataset<DummyDataset, int> {
D(std::shared_ptr<Baton> b) : baton(std::move(b)) {}
int get(size_t index) override {
std::unique_lock<std::mutex> lock(baton->mutex);
baton->cv.wait_for(lock, 1000 * kMillisecond);
return 0;
}
size_t size() const override {
return 100;
}
std::shared_ptr<Baton> baton;
};
auto baton = std::make_shared<Baton>();
auto data_loader = torch::data::make_data_loader(
D{baton}, DataLoaderOptions().workers(1).timeout(10 * kMillisecond));
auto start = std::chrono::system_clock::now();
ASSERT_THROWS_WITH(*data_loader->begin(), "Timeout");
baton->cv.notify_one();
auto end = std::chrono::system_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::seconds>(end - start);
ASSERT_LT(duration.count(), 1);
}
struct OrderingTestDataset : datasets::BatchDataset<DummyDataset, int> {
int get_batch(torch::ArrayRef<size_t> indices) override {
static int thread_counter = 0;
thread_local int thread_id = thread_counter++;
static std::condition_variable cv;
static std::mutex mutex;
static std::array<size_t, 4> order = {3, 1, 0, 2};
static std::atomic<size_t> index{0};
std::unique_lock<std::mutex> lock(mutex);
cv.wait(lock, [&] { return order.at(index) == thread_id; });
++index;
cv.notify_all();
lock.unlock();
return thread_id;
}
size_t size() const override {
return 4;
}
};
TEST(DataLoaderTest, EnforcesOrderingAmongThreadsWhenConfigured) {
auto data_loader = torch::data::make_data_loader(
OrderingTestDataset{},
DataLoaderOptions().batch_size(1).workers(4).enforce_ordering(true));
size_t index = 0;
for (int value : *data_loader) {
ASSERT_EQ(value, index++);
}
}
TEST(DataLoaderTest, Reset) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(dataset, dataset.size() / 2);
auto end = data_loader->end();
auto iterator = data_loader->begin();
ASSERT_NE(iterator, end);
ASSERT_NE(++iterator, end);
ASSERT_EQ(++iterator, end);
iterator = data_loader->begin();
ASSERT_NE(iterator, end);
ASSERT_NE(++iterator, end);
ASSERT_EQ(++iterator, end);
iterator = data_loader->begin();
ASSERT_NE(iterator, end);
ASSERT_NE(++iterator, end);
ASSERT_EQ(++iterator, end);
}
TEST(DataLoaderTest, TestExceptionsArePropagatedFromWorkers) {
struct D : datasets::Dataset<DummyDataset, int> {
int get(size_t index) override {
throw std::invalid_argument("badness");
}
size_t size() const override {
return 100;
}
};
auto data_loader =
torch::data::make_data_loader(D{}, DataLoaderOptions().workers(2));
auto iterator = data_loader->begin();
try {
(void)*iterator;
} catch (torch::data::WorkerException& e) {
ASSERT_EQ(
e.what(),
std::string("Caught exception in DataLoader worker thread. "
"Original message: badness"));
ASSERT_THROW(
std::rethrow_exception(e.original_exception), std::invalid_argument);
}
}