blob: 2d2373fe41fd07db537850eb5ed70cc7a2555a36 [file] [log] [blame]
# Owner(s): ["module: fx"]
import os
import sys
import torch
from torch.fx import symbolic_trace, subgraph_rewriter
from torch.fx.annotate import annotate
# Make the helper files in test/ importable
from torch.fx.experimental.rewriter import RewritingTracer
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_fx.py TESTNAME\n\n"
"instead.")
@torch.fx.wrap
def wrapped_gemm_bias_mul(a, b, bias):
lin_res = torch.nn.functional.linear(a, b, bias=bias)
mul_res = lin_res * a
return lin_res, mul_res
@torch.fx.wrap
def wrapped_gemm_bias_mul_with_c(a, b, bias, c):
lin_res = torch.nn.functional.linear(a, b, bias=bias)
mul_res = lin_res * c
return lin_res, mul_res
class TestSubgraphRewriter(JitTestCase):
def test_subgraph_rewriter_preserves_logic(self):
class M(torch.nn.Module):
def forward(self, x):
val = torch.neg(x) + torch.relu(x)
return torch.add(val, val)
def pattern(x):
return torch.neg(x) + torch.relu(x)
def comparison(x):
val = torch.neg(x) + torch.relu(x)
return torch.add(val, val)
traced = symbolic_trace(M())
comparison_fn = symbolic_trace(comparison)
x = torch.rand(1, 3)
# Replace `pattern` with the same pattern (shouldn't change
# the underlying logic)
subgraph_rewriter.replace_pattern(traced, pattern, pattern)
traced.graph.lint()
ref_output = comparison_fn(x)
test_output = traced.forward(x)
self.assertEqual(ref_output, test_output)
def test_subgraph_rewriter_with_oneliner_pattern(self):
class M(torch.nn.Module):
def forward(self, x):
val = torch.neg(x)
return torch.add(val, val)
def pattern(x):
return torch.neg(x)
def replacement(x):
return torch.relu(x)
def comparison(x):
val = torch.relu(x)
return torch.add(val, val)
traced = symbolic_trace(M())
comparison_fn = symbolic_trace(comparison)
x = torch.rand(1, 3)
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
ref_output = comparison_fn(x)
test_output = traced.forward(x)
self.assertEqual(ref_output, test_output)
def test_subgraph_rewriter_with_trivial_replacement(self):
class M(torch.nn.Module):
def forward(self, x):
val = torch.neg(x)
val = torch.add(val, val)
return torch.add(val, val)
def pattern(x):
return torch.add(x, x)
def replacement(x):
return x
def comparison(x):
return torch.neg(x)
traced = symbolic_trace(M())
comparison_fn = symbolic_trace(comparison)
x = torch.randn(1, 5)
matches = subgraph_rewriter.replace_pattern_with_filters(traced, pattern, replacement, [])
traced.graph.lint()
ref_output = comparison_fn(x)
test_output = traced.forward(x)
no_replacements = len(matches) == 2 and len(matches[1].replacements) == 0
self.assertEqual(ref_output, test_output)
self.assertTrue(no_replacements)
def test_subgraph_rewriter_single_pattern_match(self):
class M(torch.nn.Module):
def forward(self, x):
val = torch.neg(x) + torch.relu(x)
return torch.add(val, val)
def pattern(x):
return torch.neg(x) + torch.relu(x)
def replacement(x):
return torch.relu(x)
def comparison(x):
val = torch.relu(x)
return torch.add(val, val)
traced = symbolic_trace(M())
comparison_fn = symbolic_trace(comparison)
x = torch.rand(1, 3)
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
ref_output = comparison_fn(x)
test_output = traced.forward(x)
self.assertEqual(ref_output, test_output)
def test_subgraph_rewriter_multiple_pattern_match(self):
class M(torch.nn.Module):
def forward(self, x, w1, w2):
m1 = torch.cat([w1, w2]).sum()
m2 = torch.cat([w1, w2]).sum()
return x + torch.max(m1) + torch.max(m2)
def pattern(w1, w2):
return torch.cat([w1, w2]).sum()
def replacement(w1, w2):
return torch.stack([w1, w2])
def comparison(x, w1, w2):
m1 = torch.stack([w1, w2])
m2 = torch.stack([w1, w2])
return x + torch.max(m1) + torch.max(m2)
traced = symbolic_trace(M())
comparison_fn = symbolic_trace(comparison)
x = torch.rand(1, 3)
w1 = torch.rand(1, 3)
w2 = torch.rand(1, 3)
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
ref_outs = comparison_fn(x, w1, w2)
test_outs = traced.forward(x, w1, w2)
self.assertEqual(ref_outs, test_outs)
def test_subgraph_rewriter_graph_argument_order(self):
class M(torch.nn.Module):
def forward(self, x, y):
return torch.mm(x, y)
def pattern(x, y):
return torch.mm(x, y)
def comparison(x, y):
return torch.mm(x, y)
traced = symbolic_trace(M())
comparison_fn = symbolic_trace(comparison)
x = torch.randn(3, 4)
y = torch.randn(4, 5)
subgraph_rewriter.replace_pattern(traced, pattern, pattern)
traced.graph.lint()
ref_outs = comparison_fn(x, y)
test_outs = traced.forward(x, y)
self.assertEqual(ref_outs, test_outs)
def test_subgraph_rewriter_correct_output_replacement(self):
class M(torch.nn.Module):
def forward(self, x, y):
val = torch.neg(y) + torch.relu(x)
return torch.add(val, val)
def pattern(x):
return torch.relu(x)
def replacement(x):
return torch.neg(x)
def comparison(x, y):
val = torch.neg(y) + torch.neg(x)
return torch.add(val, val)
traced = symbolic_trace(M())
comparison_fn = symbolic_trace(comparison)
x = torch.randn(4, 4)
y = torch.randn(4, 4)
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
ref_outs = comparison_fn(x, y)
test_outs = traced.forward(x, y)
self.assertEqual(ref_outs, test_outs)
def test_subgraph_rewriter_traced_as_callable(self):
class M(torch.nn.Module):
def forward(self, x):
val = torch.neg(x) + torch.relu(x)
return torch.add(val, val)
class Pattern(torch.nn.Module):
def forward(self, x):
return torch.neg(x) + torch.relu(x)
class Replacement(torch.nn.Module):
def forward(self, x):
return torch.sigmoid(x)
def comparison(x):
val = torch.sigmoid(x)
return torch.add(val, val)
traced = symbolic_trace(M())
traced_pattern = symbolic_trace(Pattern())
traced_replacement = symbolic_trace(Replacement())
comparison_fn = symbolic_trace(comparison)
x = torch.randn(3, 4)
subgraph_rewriter.replace_pattern(traced, traced_pattern, traced_replacement)
traced.graph.lint()
ref_outs = comparison_fn(x)
test_outs = traced.forward(x)
self.assertEqual(ref_outs, test_outs)
def test_subgraph_rewriter_pattern_is_entire_graph(self):
class M(torch.nn.Module):
def forward(self, x):
a = torch.neg(x)
return torch.add(a, a)
def pattern(x):
a = torch.neg(x)
return torch.add(a, a)
def replacement(x):
a = torch.sigmoid(x)
return torch.cat([a, a])
traced = symbolic_trace(M())
comparison_fn = symbolic_trace(replacement)
x = torch.randn(3, 4)
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
ref_outs = comparison_fn(x)
test_outs = traced.forward(x)
self.assertEqual(ref_outs, test_outs)
def test_subgraph_rewriter_pattern_output_pattern_node_can_have_users_that_are_not_matched(self):
class M(torch.nn.Module):
def forward(self, x):
y = torch.relu(x)
return torch.neg(y) - y
def pattern(x):
return torch.relu(x)
def replacement(x):
return torch.sigmoid(x)
def comparison(x):
y = torch.sigmoid(x)
return torch.neg(y) - y
traced = symbolic_trace(M())
comparison_fn = symbolic_trace(comparison)
x = torch.randn(3, 4)
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
ref_outs = comparison_fn(x)
test_outs = traced.forward(x)
self.assertEqual(ref_outs, test_outs)
def test_subgraph_rewriter_internal_pattern_nodes_cannot_have_users_that_are_not_matched(self):
class M(torch.nn.Module):
def forward(self, x, w1, w2, b1, b2):
m0 = torch.cat([w1, w2])
m1 = torch.cat([w1, w2])
m2 = torch.cat([x, b2])
t0 = torch.addmm(b1, m1, m2.t())
t1 = torch.sum(w1, 1)
t2 = torch.addmm(b1, m1, m2.t())
return torch.sum(t1), torch.sum(t2)
def pattern(x, w1, w2, b1, b2):
m1 = torch.cat([w1, w2])
m2 = torch.cat([x, b2])
return torch.addmm(b1, m1, m2.t())
def replacement(x, w1, w2, b1, b2):
return torch.cat([x, w1, w2])
traced = symbolic_trace(M())
# Result should be [] since no matches can be found
res = subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
self.assertEqual(res, [])
def test_subgraph_rewriter_placeholder_matching(self):
"""
This tests that a placeholder Node can be matched to a Node with
a different number of input Nodes. In the example below, the
original traced Module looks like this:
opcode target args kwargs
------------- ---------------------------------------------------------- ------------------------ --------
placeholder x () {}
call_function <built-in function add> (x, 3) {}
call_method dequantize (add,) {}
call_function <built-in method sigmoid of type object at 0x7f7c1f440fe0> (dequantize,) {}
call_method to (sigmoid, torch.float16) {}
output output (to,) {}
while the pattern we want to match looks like this:
opcode target args kwargs
------------- ---------------------------------------------------------- ------------------------ --------
placeholder x () {}
call_method dequantize (x,) {}
call_function <built-in method sigmoid of type object at 0x7f7c1f440fe0> (dequantize,) {}
call_method to (sigmoid, torch.float16) {}
output output (to,) {}
Here, we want to be able to match the original graph's
`call_function.add` Node with the pattern graph's
`placeholder.x` Node.
Credit to Jerry Zhang (GitHub: jerryzh168) for this test case
"""
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.dtype = torch.float16
def forward(self, x):
x += 3
x = x.dequantize()
x = torch.sigmoid(x)
dtype = self.dtype
x = x.to(dtype)
return x
def pattern(x):
x = x.dequantize()
x = torch.sigmoid(x)
x = x.to(torch.float16)
return x
def replacement(x):
return x
def comparison(x):
return x + 3
traced = symbolic_trace(M())
comparison_fn = symbolic_trace(comparison)
x = torch.randn(3, 4)
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
ref_outs = comparison_fn(x)
test_outs = traced.forward(x)
self.assertEqual(ref_outs, test_outs)
def test_subgraph_rewriter_replaces_referenced_submodules(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.sigmoid = torch.nn.Sigmoid()
self.submod = torch.nn.ReLU()
def forward(self, x):
x = x + 1
return self.submod(self.sigmoid(x))
class Pattern(torch.nn.Module):
def __init__(self):
super().__init__()
self.sigmoid = torch.nn.Sigmoid()
self.submod = torch.nn.ReLU()
def forward(self, x):
return self.submod(self.sigmoid(x))
class Replacement(torch.nn.Module):
def __init__(self):
super().__init__()
self.tanh = torch.nn.Tanh()
self.submod = torch.nn.ReLU()
def forward(self, x):
return self.submod(self.tanh(x))
class Comparison(torch.nn.Module):
def __init__(self):
super().__init__()
self.tanh = torch.nn.Tanh()
self.submod = torch.nn.ReLU()
def forward(self, x):
x = x + 1
return self.submod(self.tanh(x))
traced = symbolic_trace(M())
comparison = Comparison()
x = torch.randn(3, 4)
subgraph_rewriter.replace_pattern(traced, Pattern(), Replacement())
traced.graph.lint()
ref_outs = comparison(x)
test_outs = traced.forward(x)
self.assertEqual(ref_outs, test_outs)
traced.get_submodule("tanh")
with self.assertRaisesRegex(AttributeError, "has no attribute"):
traced.get_submodule("sigmoid")
submod = traced.get_submodule("submod")
self.assertEqual(type(submod), torch.nn.ReLU)
def test_subgraph_rewriter_annotations_int(self):
class M1(torch.nn.Module):
def forward(self, x):
y: int = x
return torch.add(x, y)
class M2(torch.nn.Module):
def forward(self, x):
y = annotate(x, int)
return torch.add(x, y)
ast_rewriter = RewritingTracer()
graph = ast_rewriter.trace(M1())
module = M2()
symbolic_traced: torch.fx.GraphModule = symbolic_trace(module)
for n, m in zip(symbolic_traced.graph.nodes, graph.nodes):
if n.op == 'placeholder':
assert n.type == int
assert m.type == int
def test_subgraph_rewriter_replace_consecutive_submodules(self):
def f(x):
x = torch.sigmoid(x)
x = torch.sigmoid(x)
return torch.sigmoid(x)
def pattern(x):
return torch.sigmoid(x)
def replacement(x):
return torch.exp(x)
def comparison(x):
x = torch.exp(x)
x = torch.exp(x)
return torch.exp(x)
traced = symbolic_trace(f)
comparison_fn = symbolic_trace(comparison)
x = torch.randn(3, 4)
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
ref_outs = comparison_fn(x)
test_outs = traced.forward(x)
self.assertEqual(ref_outs, test_outs)
def test_subgraph_rewriter_with_overlapping_matches(self):
def f(x):
x = torch.sigmoid(x)
x = torch.sigmoid(x)
x = torch.sigmoid(x)
return torch.sigmoid(x)
def pattern(x):
x = torch.sigmoid(x)
x = torch.sigmoid(x)
return x
def replacement(x):
return torch.neg(x)
def comparison(x):
x = torch.neg(x)
return torch.neg(x)
traced = symbolic_trace(f)
comparison_fn = symbolic_trace(comparison)
x = torch.randn(3, 4)
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
ref_outs = comparison_fn(x)
test_outs = traced.forward(x)
self.assertEqual(ref_outs, test_outs)
def test_subgraph_rewriter_replace_with_multiple_outputs(self):
def f(x):
y = torch.sigmoid(x)
z = torch.relu(x)
return y + z
def pattern(a):
b = torch.sigmoid(a)
c = torch.relu(a)
return b, c
def replacement(x):
return torch.exp(x), torch.abs(x)
def comparison(x):
y = torch.exp(x)
z = torch.abs(x)
return y + z
traced = symbolic_trace(f)
comparison_fn = symbolic_trace(comparison)
x = torch.randn(3, 4)
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
ref_outs = comparison_fn(x)
test_outs = traced.forward(x)
self.assertEqual(ref_outs, test_outs)
def test_subgraph_rewriter_replace_with_duplicated_outputs(self):
def f(x1, x2):
x = x1 - x2
y = torch.sigmoid(x)
z = torch.relu(x)
return y + z
def pattern(a1, a2):
a = a1 - a2
b = torch.sigmoid(a)
c = torch.relu(a)
return b, c, a
def replacement(x1, x2):
y1 = torch.exp(x1)
y2 = torch.abs(x2)
return y2, y2, y1
def comparison(x1, x2):
y2 = torch.abs(x2)
return y2 + y2
traced = symbolic_trace(f)
comparison_fn = symbolic_trace(comparison)
x1 = torch.randn(3, 4)
x2 = torch.randn(3, 4)
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
ref_outs = comparison_fn(x1, x2)
test_outs = traced.forward(x1, x2)
self.assertEqual(ref_outs, test_outs)
def test_subgraph_rewriter_with_unused_args(self):
class M(torch.nn.Module):
def forward(self, x, y, z):
return x + y
def pattern(x, y):
return x + y
def replacement(x, y):
return x - y
def comparison(x1, x2, x3):
return x1 - x2
traced = symbolic_trace(M())
comparison_fn = symbolic_trace(comparison)
x1 = torch.randn(3, 4)
x2 = torch.randn(3, 4)
x3 = torch.randn(3, 4)
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
placeholder_nodes = [n for n in traced.graph.nodes if n.op == "placeholder"]
assert len(placeholder_nodes) == 3
ref_outs = comparison_fn(x1, x2, x3)
test_outs = traced.forward(x1, x2, x3)
self.assertEqual(ref_outs, test_outs)
def test_subgraph_rewriter_call_method(self):
class M(torch.nn.Module):
def forward(self, x):
x = x.dequantize()
x = x.sigmoid()
x = x.to(torch.float16)
return x
def pattern(x):
x = x.dequantize()
x = x.sigmoid()
x = x.to(torch.float16)
return x
def replacement(x):
return x
traced = symbolic_trace(M())
comparison_fn = symbolic_trace(replacement)
x1 = torch.randn(3, 4)
subgraph_rewriter.replace_pattern(traced, pattern, replacement)
traced.graph.lint()
ref_outs = comparison_fn(x1)
test_outs = traced.forward(x1)
self.assertEqual(ref_outs, test_outs)
def test_subgraph_rewriter_nodes_with_kwargs(self):
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.w0 = torch.nn.Parameter(torch.empty([128, 128]))
self.b0 = torch.nn.Parameter(torch.empty([128]))
def forward(self, in0):
lin_res = torch.nn.functional.linear(in0, self.w0, bias=self.b0)
mul_res = in0 * lin_res
sum_res = mul_res + in0
return sum_res
def pattern(a, b, bias):
lin_res = torch.nn.functional.linear(a, b, bias=bias)
mul_res = a * lin_res
return lin_res, mul_res
def replacement(a, b, bias):
lin_res, mul_res = wrapped_gemm_bias_mul(a, b, bias)
return lin_res, mul_res
traced = symbolic_trace(M())
matches = subgraph_rewriter.replace_pattern(traced, pattern, replacement)
self.assertEqual(len(matches), 1)
found_repalcement_node = False
for node in traced.graph.nodes:
if node.target == wrapped_gemm_bias_mul:
found_repalcement_node = True
break
self.assertTrue(found_repalcement_node)
def test_subgraph_rewriter_local_revert(self):
# Following model will have 3 anchors as the matching candidate with the given pattern
# Anchor 1 and 3 is a real match, but anchor 2 is not.
# The subgraph rewriter should be able to revert the changes made while matching anchor 2.
# Final match with anchor 3 should be successful.
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.w0 = torch.nn.Parameter(torch.empty([128, 128]))
self.b0 = torch.nn.Parameter(torch.empty([128]))
self.w1 = torch.nn.Parameter(torch.empty([128, 128]))
self.b1 = torch.nn.Parameter(torch.empty([128]))
self.w2 = torch.nn.Parameter(torch.empty([128, 128]))
self.b2 = torch.nn.Parameter(torch.empty([128]))
self.w3 = torch.nn.Parameter(torch.empty([128, 128]))
self.b3 = torch.nn.Parameter(torch.empty([128]))
self.w4 = torch.nn.Parameter(torch.empty([128, 128]))
self.b4 = torch.nn.Parameter(torch.empty([128]))
def forward(self, in0, in1):
lin_res_1 = torch.nn.functional.linear(in1, self.w0, bias=self.b0)
lin_res_2 = torch.nn.functional.linear(lin_res_1, self.w1, bias=self.b1)
# potential match at anchor 1
mul_res_1 = in1 * lin_res_2
sum_res_1 = mul_res_1 + in1
lin_res_3 = torch.nn.functional.linear(
sum_res_1, self.w2, bias=self.b2
)
sigmoid_res_1 = torch.sigmoid(lin_res_3)
# potential match at anchor 2
mul_res_2 = lin_res_3 * sigmoid_res_1
lin_res_4 = torch.nn.functional.linear(in0, self.w3, bias=self.b3)
lin_res_5 = torch.nn.functional.linear(lin_res_4, self.w4, bias=self.b4)
# potential match at anchor 3
mul_res_3 = in0 * lin_res_5
sum_res_2 = mul_res_3 + in0
cat_res = torch.cat(
[mul_res_2, sum_res_2],
dim=1,
)
return cat_res
def gemm_bias_mul_pattern_with_c(a, b, bias, c):
lin_res = torch.nn.functional.linear(a, b, bias=bias)
mul_res = c * lin_res
return lin_res, mul_res
def gemm_bias_mul_replacement_with_c(a, b, bias, c):
lin_res, mul_res = wrapped_gemm_bias_mul_with_c(a, b, bias, c)
return lin_res, mul_res
traced = symbolic_trace(M())
matches = subgraph_rewriter.replace_pattern(
traced,
gemm_bias_mul_pattern_with_c,
gemm_bias_mul_replacement_with_c)
self.assertEqual(len(matches), 2)
repalcement_node_found = 0
for node in traced.graph.nodes:
if node.target == wrapped_gemm_bias_mul_with_c:
repalcement_node_found += 1
self.assertEqual(repalcement_node_found, 2)
def test_replace_pattern_with_filters(self):
class M(torch.nn.Module):
def forward(self, x, scale, zero_point):
# Match, second input to add is a scalar
x = x.dequantize()
x = torch.add(x, 2)
x = x.relu()
x = torch.quantize_per_tensor(x, scale, zero_point, torch.quint8)
y = x + 1
# NOT a match, second input to add is NOT a scalar
x = x.dequantize()
x = torch.add(x, y)
x = x.relu()
x = torch.quantize_per_tensor(x, scale, zero_point, torch.quint8)
return x
def BinaryOpScalarReLUPattern(x, num, scale, zero_point):
x = x.dequantize()
x = torch.add(x, num)
x = x.relu()
x = torch.quantize_per_tensor(x, scale, zero_point, torch.quint8)
return x
def BinaryOpScalarReLUReplacement(x, num, scale, zero_point):
x = torch.mul(x, num)
return x
def second_input_is_scalar(match, original_graph, pattern_graph):
""" check the node that's matched to the second input of the pattern graph
is a scalar number
"""
input_idx = 0
for node in pattern_graph.nodes:
if node.op == "placeholder":
if input_idx == 1:
num_node = node
input_idx += 1
if not isinstance(match.nodes_map[num_node], (int, float)):
return False
return True
def check_replacement_nodes(self, traced, matches):
replacement_nodes_in_graph = [node for node in traced.graph.nodes if node.target == torch.mul]
replacement_nodes_in_res = [r for m in matches for r in m.replacements]
self.assertEqual(len(replacement_nodes_in_graph), len(replacement_nodes_in_res))
self.assertEqual(replacement_nodes_in_graph, replacement_nodes_in_res)
return len(replacement_nodes_in_graph)
# match without filter, should find 2 match
traced = symbolic_trace(M())
matches = subgraph_rewriter.replace_pattern_with_filters(
traced,
BinaryOpScalarReLUPattern,
BinaryOpScalarReLUReplacement,
None)
self.assertEqual(len(matches), 2)
self.assertEqual(check_replacement_nodes(self, traced, matches), 2)
# match with filter, should find 1 match
traced = symbolic_trace(M())
matches = subgraph_rewriter.replace_pattern_with_filters(
traced,
BinaryOpScalarReLUPattern,
BinaryOpScalarReLUReplacement,
[second_input_is_scalar])
self.assertEqual(len(matches), 1)
self.assertEqual(check_replacement_nodes(self, traced, matches), 1)
def test_matching_pattern_with_list_type_arg(self):
class M(torch.nn.Module):
def forward(self, x):
return torch.ops.aten._reshape_alias_copy.default(x, [1, 2], [3, 4])
def pattern(x, arg0, arg1):
return torch.ops.aten._reshape_alias_copy.default(x, arg0, arg1)
def replacement(x, arg0, arg1):
return torch.ops.aten._reshape_alias_copy.default(x, arg1, arg0)
traced = symbolic_trace(M())
matches = subgraph_rewriter.replace_pattern(traced, pattern, replacement)
self.assertEqual(len(matches), 1)
self.assertExpectedInline(traced.code.strip(), """\
def forward(self, x):
_reshape_alias_copy_default_1 = torch.ops.aten._reshape_alias_copy.default(x, [3, 4], [1, 2]); x = None
return _reshape_alias_copy_default_1""") # noqa: B950
def test_replacement_with_attrs(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.tensor([1])
self.b = torch.tensor([2])
def forward(self, x):
return x + self.a - self.b
class Pattern(torch.nn.Module):
def __init__(self):
super().__init__()
self.a = torch.tensor([1])
def forward(self, x):
return x + self.a
class Replacement(torch.nn.Module):
def __init__(self):
super().__init__()
self.c = torch.tensor([3])
def forward(self, x):
return x - self.c
traced = symbolic_trace(M())
matches = subgraph_rewriter.replace_pattern(traced, Pattern(), Replacement())
self.assertEqual(len(matches), 1)
def test_matching_variable_arguments(self):
class M(torch.nn.Module):
def forward(self, x):
return torch.ops.aten.max_pool2d_with_indices.default(x, [2, 2], stride=[2, 2])
def pattern(x, kernel_size, stride):
# default padding is [0, 0]
return torch.ops.aten.max_pool2d_with_indices.default(x, kernel_size, stride, padding=[0, 0])
traced = symbolic_trace(M())
matches = subgraph_rewriter.replace_pattern(traced, pattern, pattern)
self.assertEqual(len(matches), 1)
def test_replaced_nodes(self):
class M(torch.nn.Module):
def forward(self, x, y):
return torch.add(x, y)
def pattern(x, y):
return torch.add(x, y)
def replacement(x, y):
return torch.sub(torch.mul(x, y), y)
traced = symbolic_trace(M())
matches = subgraph_rewriter.replace_pattern_with_filters(traced, pattern, replacement)
def check_replacement_nodes(self, traced, matches):
replacement_nodes_in_graph = [node for node in traced.graph.nodes if node.target in {torch.sub, torch.mul}]
replacement_nodes_in_res = [r for m in matches for r in m.replacements]
self.assertEqual(len(replacement_nodes_in_graph), len(replacement_nodes_in_res))
self.assertEqual(replacement_nodes_in_graph, replacement_nodes_in_res)
return len(replacement_nodes_in_graph)
self.assertEqual(check_replacement_nodes(self, traced, matches), 2)