| from __future__ import absolute_import, division, print_function, unicode_literals |
| |
| import torch |
| |
| from torch._jit_internal import Optional # noqa: F401 |
| import torch.nn as nn |
| import torch.nn.intrinsic as nni |
| from torch.nn.quantized.modules.utils import _quantize_weight |
| |
| class LinearPackedParams(torch.nn.Module): |
| _version = 3 |
| |
| def __init__(self, dtype=torch.qint8): |
| super(LinearPackedParams, self).__init__() |
| self.dtype = dtype |
| if self.dtype == torch.qint8: |
| wq = torch._empty_affine_quantized([1, 1], scale=1.0, zero_point=0, dtype=torch.qint8) |
| elif self.dtype == torch.float16: |
| wq = torch.zeros([1, 1], dtype=torch.float) |
| self.set_weight_bias(wq, None) |
| |
| @torch.jit.export |
| def set_weight_bias(self, weight, bias): |
| # type: (torch.Tensor, Optional[torch.Tensor]) -> None |
| if self.dtype == torch.qint8: |
| self._packed_params = torch.ops.quantized.linear_prepack(weight, bias) |
| elif self.dtype == torch.float16: |
| self._packed_params = torch.ops.quantized.linear_prepack_fp16(weight, bias) |
| else: |
| raise RuntimeError('Unsupported dtype on dynamic quantized linear!') |
| |
| |
| @torch.jit.export |
| def _weight_bias(self): |
| if self.dtype == torch.qint8: |
| return torch.ops.quantized.linear_unpack(self._packed_params) |
| elif self.dtype == torch.float16: |
| return torch.ops.quantized.linear_unpack_fp16(self._packed_params) |
| else: |
| raise RuntimeError('Unsupported dtype on dynamic quantized linear!') |
| |
| def forward(self, x): |
| return x |
| |
| # Version 1 |
| # self |
| # |--- weight : Tensor |
| # |--- bias : Tensor |
| # |
| # Version 2 |
| # self |
| # |--- weight : Tensor |
| # |--- bias : Tensor |
| # |--- dtype : torch.dtype |
| # |
| # Version 3 |
| # self |
| # |--- _packed_params : (Tensor, Tensor) representing (weight, bias) |
| # of LinearPackedParams |
| # |--- dtype : torch.dtype |
| def _save_to_state_dict(self, destination, prefix, keep_vars): |
| super(LinearPackedParams, self)._save_to_state_dict(destination, prefix, keep_vars) |
| destination[prefix + 'dtype'] = self.dtype |
| destination[prefix + '_packed_params'] = self._weight_bias() |
| |
| def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, |
| missing_keys, unexpected_keys, error_msgs): |
| version = local_metadata.get('version', None) |
| if version is None or version < 2: |
| self.dtype = torch.qint8 |
| else: |
| self.dtype = state_dict[prefix + 'dtype'] |
| state_dict.pop(prefix + 'dtype') |
| |
| if version is None or version < 3: |
| self.set_weight_bias(state_dict[prefix + 'weight'], state_dict[prefix + 'bias']) |
| state_dict.pop(prefix + 'weight') |
| state_dict.pop(prefix + 'bias') |
| |
| if version == 3: |
| weight, bias = state_dict[prefix + '_packed_params'] |
| state_dict.pop(prefix + '_packed_params') |
| self.set_weight_bias(weight, bias) |
| |
| super(LinearPackedParams, self)._load_from_state_dict(state_dict, prefix, local_metadata, False, |
| missing_keys, unexpected_keys, error_msgs) |
| |
| @torch.jit.export |
| def __getstate__(self): |
| if not torch.jit.is_scripting(): |
| raise RuntimeError('torch.save() is not currently supported for quantized modules.' |
| ' See https://github.com/pytorch/pytorch/issues/24045.' |
| ' Please use state_dict or torch.jit serialization.') |
| qweight, bias = self._weight_bias() |
| return qweight, bias, self.training, self.dtype |
| |
| @torch.jit.export |
| def __setstate__(self, state): |
| self.dtype = state[3] |
| self.set_weight_bias(state[0], state[1]) |
| self.training = state[2] |
| |
| def __repr__(self): |
| return self._weight_bias().__repr__() |
| |
| |
| class Linear(torch.nn.Module): |
| r""" |
| A quantized linear module with quantized tensor as inputs and outputs. |
| We adopt the same interface as `torch.nn.Linear`, please see |
| https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation. |
| |
| Similar to :class:`~torch.nn.Linear`, attributes will be randomly |
| initialized at module creation time and will be overwritten later |
| |
| Attributes: |
| weight (Tensor): the non-learnable quantized weights of the module of |
| shape :math:`(\text{out\_features}, \text{in\_features})`. |
| bias (Tensor): the non-learnable bias of the module of shape :math:`(\text{out\_features})`. |
| If :attr:`bias` is ``True``, the values are initialized to zero. |
| scale: `scale` parameter of output Quantized Tensor, type: double |
| zero_point: `zero_point` parameter for output Quantized Tensor, type: long |
| |
| Examples:: |
| |
| >>> m = nn.quantized.Linear(20, 30) |
| >>> input = torch.randn(128, 20) |
| >>> input = torch.quantize_per_tensor(input, 1.0, 0, torch.quint8) |
| >>> output = m(input) |
| >>> print(output.size()) |
| torch.Size([128, 30]) |
| """ |
| _version = 3 |
| _FLOAT_MODULE = nn.Linear |
| |
| def __init__(self, in_features, out_features, bias_=True, dtype=torch.qint8): |
| super(Linear, self).__init__() |
| # We don't muck around with buffers or attributes or anything here |
| # to keep the module simple. *everything* is simply a Python attribute. |
| # Serialization logic is explicitly handled in the below serialization and |
| # deserialization modules |
| self.in_features = in_features |
| self.out_features = out_features |
| bias = None |
| if bias_: |
| bias = torch.zeros(out_features, dtype=torch.float) |
| |
| if dtype == torch.qint8: |
| qweight = torch._empty_affine_quantized( |
| [out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8) |
| elif dtype == torch.float16: |
| qweight = torch.zeros([out_features, in_features], dtype=torch.float) |
| else: |
| raise RuntimeError('Unsupported dtype specified for quantized Linear!') |
| |
| self._packed_params = LinearPackedParams(dtype) |
| self._packed_params.set_weight_bias(qweight, bias) |
| self.scale = 1.0 |
| self.zero_point = 0 |
| |
| def _get_name(self): |
| return 'QuantizedLinear' |
| |
| def extra_repr(self): |
| return 'in_features={}, out_features={}, scale={}, zero_point={}, qscheme={}'.format( |
| self.in_features, self.out_features, self.scale, self.zero_point, self.weight().qscheme() |
| ) |
| |
| def __repr__(self): |
| # We don't want to show `LinearPackedParams` children, hence custom |
| # `__repr__`. This is the same as nn.Module.__repr__, except the check |
| # for the `LinearPackedParams`. |
| # You should still override `extra_repr` to add more info. |
| extra_lines = [] |
| extra_repr = self.extra_repr() |
| # empty string will be split into list [''] |
| if extra_repr: |
| extra_lines = extra_repr.split('\n') |
| child_lines = [] |
| for key, module in self._modules.items(): |
| if isinstance(module, LinearPackedParams): |
| continue |
| mod_str = repr(module) |
| mod_str = _addindent(mod_str, 2) |
| child_lines.append('(' + key + '): ' + mod_str) |
| lines = extra_lines + child_lines |
| |
| main_str = self._get_name() + '(' |
| if lines: |
| # simple one-liner info, which most builtin Modules will use |
| if len(extra_lines) == 1 and not child_lines: |
| main_str += extra_lines[0] |
| else: |
| main_str += '\n ' + '\n '.join(lines) + '\n' |
| |
| main_str += ')' |
| return main_str |
| |
| def forward(self, x): |
| return torch.ops.quantized.linear( |
| x, self._packed_params._packed_params, self.scale, self.zero_point) |
| |
| # ===== Serialization methods ===== |
| # The special consideration here is that we have to unpack the weights into their |
| # regular QTensor form for serialization. Packed weights should not live |
| # outside the process in which they were created, rather they should be derived |
| # from the QTensor weight. |
| # |
| # Version 1 |
| # self |
| # |--- scale : float |
| # |--- zero_point : int |
| # |--- weight : Tensor |
| # |--- bias : Tensor |
| # |
| # Version 2 |
| # self |
| # |--- scale : float |
| # |--- zero_point : int |
| # |--- _packed_params : Module |
| # |--- weight : Tensor |
| # |--- bias : Tensor |
| # |
| # Version 3 |
| # self |
| # |--- scale : float |
| # |--- zero_point : int |
| # |--- _packed_params : Module |
| # |--- _packed_params : (Tensor, Tensor) representing weight, bias |
| # of LinearPackedParams C++ struct |
| # |
| def _save_to_state_dict(self, destination, prefix, keep_vars): |
| super(Linear, self)._save_to_state_dict(destination, prefix, keep_vars) |
| destination[prefix + 'scale'] = torch.tensor(self.scale) |
| destination[prefix + 'zero_point'] = torch.tensor(self.zero_point) |
| |
| # ===== Deserialization methods ===== |
| # Counterpart to the serialization methods, we must pack the serialized QTensor |
| # weight into its packed format for use by the FBGEMM ops. |
| def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, |
| missing_keys, unexpected_keys, error_msgs): |
| self.scale = float(state_dict[prefix + 'scale']) |
| state_dict.pop(prefix + 'scale') |
| |
| self.zero_point = int(state_dict[prefix + 'zero_point']) |
| state_dict.pop(prefix + 'zero_point') |
| |
| version = local_metadata.get('version', None) |
| if version is None or version == 1: |
| # We moved the parameters into a LinearPackedParameters submodule |
| weight = state_dict.pop(prefix + 'weight') |
| bias = state_dict.pop(prefix + 'bias') |
| state_dict.update({prefix + '_packed_params.weight': weight, |
| prefix + '_packed_params.bias': bias}) |
| |
| super(Linear, self)._load_from_state_dict(state_dict, prefix, local_metadata, False, |
| missing_keys, unexpected_keys, error_msgs) |
| |
| # Function rather than property to make sure that JIT serialization doesn't |
| # register this as an attribute |
| def _weight_bias(self): |
| return self._packed_params._weight_bias() |
| |
| def weight(self): |
| return self._weight_bias()[0] |
| |
| def bias(self): |
| return self._weight_bias()[1] |
| |
| def set_weight_bias(self, w, b): |
| # type: (torch.Tensor, Optional[torch.Tensor]) -> None |
| self._packed_params.set_weight_bias(w, b) |
| |
| @classmethod |
| def from_float(cls, mod): |
| r"""Create a quantized module from a float module or qparams_dict |
| |
| Args: |
| mod (Module): a float module, either produced by torch.quantization |
| utilities or provided by the user |
| """ |
| if hasattr(mod, 'weight_fake_quant'): |
| # assert type(mod) == QATLinear, 'training mode nnq.Linear.from_float only works for nn.qat.Linear' |
| weight_post_process = mod.weight_fake_quant |
| activation_post_process = mod.activation_post_process |
| else: |
| assert type(mod) == cls._FLOAT_MODULE, ' nnq.' + cls.__name__ + '.from_float only works for ' + \ |
| cls._FLOAT_MODULE.__name__ |
| assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined' |
| if type(mod) == nni.LinearReLU: |
| activation_post_process = mod[1].activation_post_process |
| mod = mod[0] |
| else: |
| activation_post_process = mod.activation_post_process |
| weight_post_process = mod.qconfig.weight() |
| weight_post_process(mod.weight) |
| dtype = weight_post_process.dtype |
| act_scale, act_zp = activation_post_process.calculate_qparams() |
| assert dtype == torch.qint8, 'Weight observer must have dtype torch.qint8' |
| qweight = _quantize_weight(mod.weight.float(), weight_post_process) |
| qlinear = cls(mod.in_features, mod.out_features, dtype=dtype) |
| qlinear.set_weight_bias(qweight, mod.bias) |
| qlinear.scale = float(act_scale) |
| qlinear.zero_point = int(act_zp) |
| return qlinear |