| /** | 
 |  * Copyright (c) 2016-present, Facebook, Inc. | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *     http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include <iomanip> | 
 | #include <string> | 
 | #include <vector> | 
 |  | 
 | #include <ATen/ATen.h> | 
 | #include <caffe2/core/timer.h> | 
 | #include <caffe2/utils/string_utils.h> | 
 | #include <torch/csrc/autograd/grad_mode.h> | 
 | #include <torch/csrc/jit/serialization/import.h> | 
 | #include <torch/script.h> | 
 |  | 
 | #include <c10/mobile/CPUCachingAllocator.h> | 
 |  | 
 | C10_DEFINE_string( | 
 |     refmodel, | 
 |     "", | 
 |     "The reference torch script model to compare against."); | 
 | C10_DEFINE_string( | 
 |     model, | 
 |     "", | 
 |     "The torch script model to compare to the reference model."); | 
 | C10_DEFINE_string( | 
 |     input_dims, | 
 |     "", | 
 |     "Alternate to input_files, if all inputs are simple " | 
 |     "float TensorCPUs, specify the dimension using comma " | 
 |     "separated numbers. If multiple input needed, use " | 
 |     "semicolon to separate the dimension of different " | 
 |     "tensors."); | 
 | C10_DEFINE_string(input_type, "", "Input type (uint8_t/float)"); | 
 | C10_DEFINE_string( | 
 |     input_memory_format, | 
 |     "contiguous_format", | 
 |     "Input memory format (contiguous_format/channels_last)"); | 
 | C10_DEFINE_int(input_max, 1, "The maximum value inputs should have"); | 
 | C10_DEFINE_int(input_min, -1, "The minimum value inputs should have"); | 
 | C10_DEFINE_bool( | 
 |     no_inputs, | 
 |     false, | 
 |     "Whether the model has any input. Will ignore other input arguments if true"); | 
 | C10_DEFINE_bool( | 
 |     use_caching_allocator, | 
 |     false, | 
 |     "Whether to cache allocations between inference iterations"); | 
 | C10_DEFINE_bool( | 
 |     print_output, | 
 |     false, | 
 |     "Whether to print output with all one input tensor."); | 
 | C10_DEFINE_int(iter, 10, "The number of iterations to run."); | 
 | C10_DEFINE_int(report_freq, 1000, "An update will be reported every n iterations"); | 
 | C10_DEFINE_int(pytext_len, 0, "Length of input sequence."); | 
 | C10_DEFINE_string( | 
 |     backend, | 
 |     "cpu", | 
 |     "what backend to use for model (vulkan, cpu, metal) (default=cpu)"); | 
 | C10_DEFINE_string( | 
 |     refbackend, | 
 |     "cpu", | 
 |     "what backend to use for model (vulkan, cpu, metal) (default=cpu)"); | 
 | C10_DEFINE_string(tolerance, "1e-5", "tolerance to use for comparison"); | 
 | C10_DEFINE_int(nthreads, 1, "Number of threads to launch. Useful for checking correct concurrent behaviour."); | 
 | C10_DEFINE_bool( | 
 |     report_failures, | 
 |     true, | 
 |     "Whether to report error during failed iterations"); | 
 |  | 
 | bool checkRtol( | 
 |     const at::Tensor& diff, | 
 |     const std::vector<at::Tensor>& inputs, | 
 |     float tolerance, | 
 |     bool report) { | 
 |   float maxValue = 0.0f; | 
 |  | 
 |   for (const auto& tensor : inputs) { | 
 |     maxValue = fmax(tensor.abs().max().item<float>(), maxValue); | 
 |   } | 
 |   float threshold = tolerance * maxValue; | 
 |   float maxDiff = diff.abs().max().item<float>(); | 
 |  | 
 |   bool passed = maxDiff < threshold; | 
 |   if (!passed && report) { | 
 |     std::cout << "Check FAILED!      Max diff allowed: " | 
 |               << std::setw(10) << std::setprecision(5) << threshold | 
 |               << "     max diff: " | 
 |               << std::setw(10) << std::setprecision(5) << maxDiff | 
 |               << std::endl; | 
 |   } | 
 |  | 
 |   return passed; | 
 | } | 
 |  | 
 | void report_pass_rate(int passed, int total) { | 
 |   int pass_rate = static_cast<int>(static_cast<float>(passed) / static_cast<float>(total) * 100); | 
 |   std::cout << "Output was equal within tolerance " << passed << "/" | 
 |             << total | 
 |             << " times. Pass rate: " << pass_rate | 
 |             << std::setprecision(2) << "%" << std::endl; | 
 | } | 
 |  | 
 | std::vector<std::string> split( | 
 |     char separator, | 
 |     const std::string& string, | 
 |     bool ignore_empty = true) { | 
 |   std::vector<std::string> pieces; | 
 |   std::stringstream ss(string); | 
 |   std::string item; | 
 |   while (getline(ss, item, separator)) { | 
 |     if (!ignore_empty || !item.empty()) { | 
 |       pieces.push_back(std::move(item)); | 
 |     } | 
 |   } | 
 |   return pieces; | 
 | } | 
 |  | 
 | std::vector<c10::IValue> create_inputs( | 
 |     std::vector<c10::IValue>& refinputs, | 
 |     std::vector<c10::IValue>& inputs, | 
 |     std::string& refbackend, | 
 |     std::string& backend, | 
 |     const int range_min, | 
 |     const int range_max) { | 
 |   if (FLAGS_no_inputs) { | 
 |     return {}; | 
 |   } | 
 |  | 
 |   CAFFE_ENFORCE_GE(FLAGS_input_dims.size(), 0, "Input dims must be specified."); | 
 |   CAFFE_ENFORCE_GE(FLAGS_input_type.size(), 0, "Input type must be specified."); | 
 |  | 
 |   std::vector<std::string> input_dims_list = split(';', FLAGS_input_dims); | 
 |   std::vector<std::string> input_type_list = split(';', FLAGS_input_type); | 
 |   std::vector<std::string> input_memory_format_list = | 
 |       split(';', FLAGS_input_memory_format); | 
 |  | 
 |   CAFFE_ENFORCE_GE( | 
 |       input_dims_list.size(), 0, "Input dims not specified correctly."); | 
 |   CAFFE_ENFORCE_GE( | 
 |       input_type_list.size(), 0, "Input type not specified correctly."); | 
 |   CAFFE_ENFORCE_GE( | 
 |       input_memory_format_list.size(), | 
 |       0, | 
 |       "Input format list not specified correctly."); | 
 |  | 
 |   CAFFE_ENFORCE_EQ( | 
 |       input_dims_list.size(), | 
 |       input_type_list.size(), | 
 |       "Input dims and type should have the same number of items."); | 
 |   CAFFE_ENFORCE_EQ( | 
 |       input_dims_list.size(), | 
 |       input_memory_format_list.size(), | 
 |       "Input dims and format should have the same number of items."); | 
 |  | 
 |   for (size_t i = 0; i < input_dims_list.size(); ++i) { | 
 |     auto input_dims_str = split(',', input_dims_list[i]); | 
 |     std::vector<int64_t> input_dims; | 
 |     input_dims.reserve(input_dims_str.size()); | 
 |     for (const auto& s : input_dims_str) { | 
 |       input_dims.push_back(std::stoi(s)); | 
 |     } | 
 |  | 
 |     at::ScalarType input_type; | 
 |     if (input_type_list[i] == "float") { | 
 |       input_type = at::ScalarType::Float; | 
 |     } else if (input_type_list[i] == "uint8_t") { | 
 |       input_type = at::ScalarType::Byte; | 
 |     } else if (input_type_list[i] == "int64") { | 
 |       input_type = at::ScalarType::Long; | 
 |     } else { | 
 |       CAFFE_THROW("Unsupported input type: ", input_type_list[i]); | 
 |     } | 
 |  | 
 |     at::MemoryFormat input_memory_format; | 
 |     if (input_memory_format_list[i] == "channels_last") { | 
 |       if (input_dims.size() != 4u) { | 
 |         CAFFE_THROW( | 
 |             "channels_last memory format only available on 4D tensors!"); | 
 |       } | 
 |       input_memory_format = at::MemoryFormat::ChannelsLast; | 
 |     } else if (input_memory_format_list[i] == "contiguous_format") { | 
 |       input_memory_format = at::MemoryFormat::Contiguous; | 
 |     } else { | 
 |       CAFFE_THROW( | 
 |           "Unsupported input memory format: ", input_memory_format_list[i]); | 
 |     } | 
 |  | 
 |     const auto input_tensor = torch::rand( | 
 |         input_dims, | 
 |         at::TensorOptions(input_type).memory_format(input_memory_format))*(range_max - range_min) - range_min; | 
 |  | 
 |     if (refbackend == "vulkan") { | 
 |       refinputs.emplace_back(input_tensor.vulkan()); | 
 |     } else { | 
 |       refinputs.emplace_back(input_tensor); | 
 |     } | 
 |  | 
 |     if (backend == "vulkan") { | 
 |       inputs.emplace_back(input_tensor.vulkan()); | 
 |     } else { | 
 |       inputs.emplace_back(input_tensor); | 
 |     } | 
 |   } | 
 |  | 
 |   if (FLAGS_pytext_len > 0) { | 
 |     auto stensor = FLAGS_pytext_len * at::ones({1}, torch::kI64); | 
 |     if (refbackend == "vulkan") { | 
 |       refinputs.emplace_back(stensor.vulkan()); | 
 |     } else { | 
 |       refinputs.emplace_back(stensor); | 
 |     } | 
 |  | 
 |     if (backend == "vulkan") { | 
 |       inputs.emplace_back(stensor.vulkan()); | 
 |     } else { | 
 |       inputs.emplace_back(stensor); | 
 |     } | 
 |   } | 
 |  | 
 |   return inputs; | 
 | } | 
 |  | 
 | void run_check(float tolerance) { | 
 |   torch::jit::Module module = torch::jit::load(FLAGS_model); | 
 |   torch::jit::Module refmodule = torch::jit::load(FLAGS_refmodel); | 
 |  | 
 |   module.eval(); | 
 |   refmodule.eval(); | 
 |  | 
 |   std::thread::id this_id = std::this_thread::get_id(); | 
 |   std::cout << "Running check on thread " << this_id << "." << std::endl; | 
 |  | 
 |   int passed = 0; | 
 |   for (int i = 0; i < FLAGS_iter; ++i) { | 
 |     std::vector<c10::IValue> refinputs; | 
 |     std::vector<c10::IValue> inputs; | 
 |     create_inputs( | 
 |         refinputs, inputs, | 
 |         FLAGS_refbackend, FLAGS_backend, | 
 |         FLAGS_input_min, FLAGS_input_max); | 
 |  | 
 |     const auto refoutput = refmodule.forward(refinputs).toTensor().cpu(); | 
 |     const auto output = module.forward(inputs).toTensor().cpu(); | 
 |  | 
 |     bool check = checkRtol( | 
 |         refoutput-output, | 
 |         {refoutput, output}, | 
 |         tolerance, | 
 |         FLAGS_report_failures); | 
 |  | 
 |     if (check) { | 
 |       passed += 1; | 
 |     } | 
 |     else if (FLAGS_report_failures) { | 
 |       std::cout << " (Iteration " << i << " failed)" << std::endl; | 
 |     } | 
 |  | 
 |     if (i > 0 && (i+1) % FLAGS_report_freq == 0) { | 
 |       report_pass_rate(passed, i+1); | 
 |     } | 
 |   } | 
 |   report_pass_rate(passed, FLAGS_iter); | 
 | } | 
 |  | 
 | int main(int argc, char** argv) { | 
 |   c10::SetUsageMessage( | 
 |       "Run accuracy comparison to a reference model for a pytorch model.\n" | 
 |       "Example usage:\n" | 
 |       "./compare_models_torch" | 
 |       " --refmodel=<ref_model_file>" | 
 |       " --model=<model_file>" | 
 |       " --iter=20"); | 
 |   if (!c10::ParseCommandLineFlags(&argc, &argv)) { | 
 |     std::cerr << "Failed to parse command line flags!" << std::endl; | 
 |     return 1; | 
 |   } | 
 |  | 
 |   if (FLAGS_input_min >= FLAGS_input_max) { | 
 |     std::cerr << "Input min: " << FLAGS_input_min | 
 |               << " should be less than input max: " | 
 |               << FLAGS_input_max << std::endl; | 
 |     return 1; | 
 |   } | 
 |  | 
 |   std::stringstream ss(FLAGS_tolerance); | 
 |   float tolerance = 0; | 
 |   ss >> tolerance; | 
 |   std::cout << "tolerance: " << tolerance << std::endl; | 
 |  | 
 |   c10::InferenceMode mode; | 
 |   torch::autograd::AutoGradMode guard(false); | 
 |   torch::jit::GraphOptimizerEnabledGuard no_optimizer_guard(false); | 
 |  | 
 |   c10::CPUCachingAllocator caching_allocator; | 
 |   c10::optional<c10::WithCPUCachingAllocatorGuard> caching_allocator_guard; | 
 |   if (FLAGS_use_caching_allocator) { | 
 |     caching_allocator_guard.emplace(&caching_allocator); | 
 |   } | 
 |  | 
 |   std::vector<std::thread> check_threads; | 
 |   check_threads.reserve(FLAGS_nthreads); | 
 |   for (int i = 0; i < FLAGS_nthreads; ++i) { | 
 |     check_threads.emplace_back(std::thread(run_check, tolerance)); | 
 |   } | 
 |  | 
 |   for (std::thread& th : check_threads) { | 
 |     if (th.joinable()) { | 
 |       th.join(); | 
 |     } | 
 |   } | 
 |  | 
 |   return 0; | 
 | } |