| import torch | 
 |  | 
 | from . import benchmark | 
 |  | 
 |  | 
 | class SwishBench(benchmark.Benchmark): | 
 |     def __init__(self, mode, device, dtype, M, N): | 
 |         super().__init__(mode, device, dtype) | 
 |         self.M = M | 
 |         self.N = N | 
 |         self.data = self.rand( | 
 |             [M, N], device=device, dtype=dtype, requires_grad=self.requires_grad | 
 |         ) | 
 |         self.inputs = [self.data] | 
 |         self.zeros = torch.zeros(M, N, device=device) | 
 |         self.six = self.zeros + 6.0 | 
 |         self.three = self.zeros + 3.0 | 
 |         self.sixth = self.zeros + 1.0 / 6.0 | 
 |  | 
 |     def forward(self, inp): | 
 |         y = inp * (torch.min(torch.relu(inp), self.six) + self.three) * self.sixth | 
 |         return y | 
 |  | 
 |     def reference(self): | 
 |         return self.numpy(self.forward(self.data)) | 
 |  | 
 |     def config(self): | 
 |         return [self.M, self.N] | 
 |  | 
 |     @staticmethod | 
 |     def module(): | 
 |         return "swish" | 
 |  | 
 |     def memory_workload(self): | 
 |         if self.mode == "fwd": | 
 |             sol_count = 1 + 1 | 
 |             algorithmic_count = 3 + 1 | 
 |         else: | 
 |             sol_count = (1 + 1) + (1 + 1) | 
 |             algorithmic_count = (3 + 1) + (3 + 1) | 
 |  | 
 |         buffer_size = self.M * self.N | 
 |         return { | 
 |             "sol": buffer_size * sol_count, | 
 |             "algorithmic": buffer_size * algorithmic_count, | 
 |         } | 
 |  | 
 |     @staticmethod | 
 |     def default_configs(): | 
 |         return [[128, 1 << 16]] | 
 |  | 
 |  | 
 | benchmark.register_benchmark_class(SwishBench) |