| from typing import Any, Optional |
| from .module import Module |
| from ... import Tensor |
| |
| |
| # The deprecated `size_average` and `reduce` arguments are not included in the stubs |
| class _Loss(Module): |
| reduction: str = ... |
| |
| def __init__(self, reduction: str = ...) -> None: ... |
| |
| |
| class _WeightedLoss(_Loss): |
| def __init__(self, weight: Optional[Any] = ..., reduction: str = ...) -> None: ... |
| |
| |
| class L1Loss(_Loss): |
| def __init__(self, reduction: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class NLLLoss(_WeightedLoss): |
| ignore_index: int = ... |
| |
| def __init__(self, weight: Optional[Any] = ..., ignore_index: int = ..., reduction: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class NLLLoss2d(NLLLoss): |
| def __init__(self, weight: Optional[Any] = ..., ignore_index: int = ..., reduction: str = ...) -> None: ... |
| |
| |
| class PoissonNLLLoss(_Loss): |
| log_input: bool = ... |
| full: bool = ... |
| eps: float = ... |
| |
| def __init__(self, log_input: bool = ..., full: bool = ..., eps: float = ..., reduction: str = ...) -> None: ... |
| |
| def forward(self, log_input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class KLDivLoss(_Loss): |
| def __init__(self, reduction: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class MSELoss(_Loss): |
| def __init__(self, reduction: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class BCELoss(_WeightedLoss): |
| def __init__(self, weight: Optional[Any] = ..., reduction: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class BCEWithLogitsLoss(_Loss): |
| def __init__(self, weight: Optional[Any] = ..., reduction: str = ..., pos_weight: Optional[Any] = ...) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class HingeEmbeddingLoss(_Loss): |
| margin: Any = ... |
| |
| def __init__(self, margin: float = ..., reduction: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class MultiLabelMarginLoss(_Loss): |
| def __init__(self, reduction: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class SmoothL1Loss(_Loss): |
| def __init__(self, reduction: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class SoftMarginLoss(_Loss): |
| def __init__(self, reduction: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class CrossEntropyLoss(_WeightedLoss): |
| ignore_index: int = ... |
| |
| def __init__(self, weight: Optional[Any] = ..., ignore_index: int = ..., reduction: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class MultiLabelSoftMarginLoss(_WeightedLoss): |
| def __init__(self, weight: Optional[Any] = ..., reduction: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class CosineEmbeddingLoss(_Loss): |
| margin: float = ... |
| |
| def __init__(self, margin: float = ..., reduction: str = ...) -> None: ... |
| |
| def forward(self, input1: Tensor, input2: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class MarginRankingLoss(_Loss): |
| margin: float = ... |
| |
| def __init__(self, margin: float = ..., reduction: str = ...) -> None: ... |
| |
| def forward(self, input1: Tensor, input2: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class MultiMarginLoss(_WeightedLoss): |
| p: int = ... |
| margin: float = ... |
| |
| def __init__(self, p: int = ..., margin: float = ..., weight: Optional[Any] = ..., |
| reduction: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, target: Tensor) -> Tensor: ... |
| |
| |
| class TripletMarginLoss(_Loss): |
| margin: float = ... |
| p: int = ... |
| eps: float = ... |
| swap: bool = ... |
| |
| def __init__(self, margin: float = ..., p: int = ..., eps: float = ..., swap: bool = ..., |
| reduction: str = ...) -> None: ... |
| |
| def forward(self, anchor: Tensor, positive: Tensor, negative: Tensor) -> Tensor: ... |
| |
| |
| class CTCLoss(_Loss): |
| blank: int = ... |
| zero_infinity: bool = ... |
| |
| def __init__(self, blank: int = ..., reduction: str = ..., zero_infinity: bool = ...) -> None: ... |
| |
| def forward(self, log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor) -> Tensor: ... |