blob: 18a665b88ede08bc913787aee11010984890507e [file] [log] [blame]
from typing import Dict, List, Set, Iterable, Optional
from torch.fx.passes.utils.fuser_utils import fuse_by_partitions
from torch.fx.passes.tools_common import NodeList
from torch.fx.graph_module import GraphModule
from torch.fx.node import Node, _get_qualified_name
from torch.fx.passes.operator_support import OperatorSupportBase
from collections import defaultdict
import logging
import itertools
logging.basicConfig(level=logging.WARNING)
logger = logging.getLogger(__name__)
class Partition:
def __init__(self, id: int = None, nodes: Iterable[Node] = None):
self.id = id
self.nodes: Set[Node] = set(nodes) if nodes is not None else set()
def __repr__(self) -> str:
return str(self.nodes)
def add_node(self, node: Node):
self.nodes.add(node)
def remove_node(self, node: Node):
self.nodes.remove(node)
def size(self):
return len(self.nodes)
class CapabilityBasedPartitioner:
def __init__(self,
graph_module: GraphModule,
operator_support: OperatorSupportBase,
allows_single_node_partition: bool = False
) -> None:
self.graph_module = graph_module
self.operator_support = operator_support
self.allows_single_node_partition = allows_single_node_partition
# map of node to it's upstream dependency nodes
# if A is found in dependency_map[B], then B depends on A (or a is an upstream depedency of b)
self.dependency_map = self.__build_dependency_map()
def __build_dependency_map(self) -> Dict[Node, Set[Node]]:
dependency_map = defaultdict(set)
# assumptions: nodes in graph are sorted in topological order
for node in self.graph_module.graph.nodes:
for input_node in node.all_input_nodes:
# add input_node and input_node's upstream dependency
dependency_map[node].add(input_node)
dependency_map[node].update(dependency_map[input_node])
return dependency_map
def __node_depends_on(self, a: Node, b: Node) -> int:
# Returns
# 1 if b depends on a (,or equivalently a is an upstream depedency of b)
# -1 if a depends on b (,or equivalently b is an upstream depedency of a)
# 0 if a and b doesn't have dependency between each other
if a in self.dependency_map[b]:
return 1
elif b in self.dependency_map[a]:
return -1
else:
return 0
def __partition_depends_on(self, partition_a: Partition, partition_b: Partition) -> int:
# Returns
# 1 if b depends on a (,or equivalently a is an upstream depedency of b)
# -1 if a depends on b (,or equivalently b is an upstream depedency of a)
# 0 if a and b doesn't have dependency between each other
# TODO: build a cache here to speedup the query
for node_a in partition_a.nodes:
for node_b in partition_b.nodes:
dependency = self.__node_depends_on(node_a, node_b)
if dependency != 0:
return dependency
return 0
def __get_supported_nodes(self) -> NodeList:
logging.debug("Collecting supported nodes...")
supported_nodes = []
for node in self.graph_module.graph.nodes:
if self.operator_support.is_node_supported(dict(self.graph_module.named_modules()), node):
supported_nodes.append(node)
return supported_nodes
def propose_partitions(self) -> List[Partition]:
candidates: NodeList = self.__get_supported_nodes()
# assumptions: nodes in candidate list is sorted in topological order
assignment: Dict[Node, int] = {} # maping from node to partition_id
partitions_by_id: Dict[int, Partition] = {} # mapping from partition_id to partition
new_partition_id = itertools.count()
def assign(node: Node, id: Optional[int] = None):
# If id is None, remove the node from original assigment
# node has been assigned before, clean up and re-assign
if node in assignment:
original_id = assignment[node]
del assignment[node]
partitions_by_id[original_id].remove_node(node)
if partitions_by_id[original_id].size() == 0:
del partitions_by_id[original_id]
if id is not None:
assignment[node] = id
if id not in partitions_by_id:
partitions_by_id[id] = Partition(id=id, nodes=[node])
else:
partitions_by_id[id].add_node(node)
logging.debug("Proposing partitions...")
# visit candidates in reversed topological order
for node in reversed(candidates):
# use Dict as an ordered set to ensure deterministic partitioning result, don't care value
user_partitions: Dict[Partition, None] = {}
for user_node in node.users:
if user_node in assignment:
id = assignment[user_node]
user_partitions[partitions_by_id[id]] = None
else:
user_partitions[Partition(nodes=[user_node])] = None
# Filter out all the partitions that has dependency on other users
# TODO: find a better way to do this, rather than pair-wise comparision
user_partitions_list = list(user_partitions.keys())
for i in range(len(user_partitions_list)):
for j in range(i + 1, len(user_partitions_list)):
pi = user_partitions_list[i]
pj = user_partitions_list[j]
dependency = self.__partition_depends_on(pi, pj)
if dependency == 1 and pj in user_partitions:
del user_partitions[pj]
elif dependency == -1 and pi in user_partitions:
del user_partitions[pi]
# We use the following rules for partition assignment:
# 1. If none of the candidates has been assigned to a partition, create a new partition
# 2. If there is one partition candidate, assign to the partition
# 3. If there are more than one partition candidates, assign current node to the first partition and
# merge the other partitions with first partition, since user_partitions doesn't have depedency between
# each other.
assigned_candidate_partition_ids = [partition.id for partition in user_partitions if partition.id is not None]
if len(assigned_candidate_partition_ids) == 0:
# create a new partition
assign(node, next(new_partition_id))
elif len(assigned_candidate_partition_ids) == 1:
id = assigned_candidate_partition_ids[0]
assign(node, id)
else:
# users are assigned to more than one partition, since user_partitions doesn't have
# dependency on each other, they can be fused into a single partition
id = assigned_candidate_partition_ids[0]
assign(node, id)
reassignment: Dict[Node, int] = {}
for other_id in assigned_candidate_partition_ids[1:]:
for other_node in partitions_by_id[other_id].nodes:
reassignment[other_node] = id
for other_node in reassignment:
assign(other_node, id)
# post processing to re-assign "getitem" nodes into upstream partition
logger.debug("Reassigning getitem nodes to its producer node's partition...")
nodes_reassignment: Dict[Node, int] = {}
for node in self.graph_module.graph.nodes:
is_tuple_output = True
for user in node.users:
if user.op != "call_function" or \
_get_qualified_name(user.target) != "_operator.getitem": # type: ignore[arg-type]
is_tuple_output = False
break
# node has tuple outputs, re-assign all following getitem node into node's partition
if is_tuple_output:
id = assignment.get(node, None) # type: ignore[arg-type]
for user in node.users:
if assignment.get(user, None) != id: # type: ignore[arg-type]
nodes_reassignment[user] = id
for node, id in nodes_reassignment.items():
assign(node, id)
# filter out single node partitions
if not self.allows_single_node_partition:
logger.debug("Filtering out single node partitions...")
non_compute_ops = {"torch.ops.aten.view", "_operator.getitem"}
partitions_to_remove: List[int] = []
for id, partition in partitions_by_id.items():
compute_node_count = 0
for node in partition.nodes:
if node.op == "call_function" and \
_get_qualified_name(node.target) not in non_compute_ops: # type: ignore[arg-type]
compute_node_count += 1
if compute_node_count <= 1:
partitions_to_remove.append(id)
for id in partitions_to_remove:
del partitions_by_id[id]
logging.debug("Partitions proposed:")
for id, partition in partitions_by_id.items():
logging.debug(f"partition #{id}", [node.name for node in partition.nodes])
return list(partitions_by_id.values())
def fuse_partitions(self, partitions: List[Partition]) -> GraphModule:
logging.debug("Fusing partitions...")
# fuse_by_partitions expects partitions in List[List[Node]]: [ [node0, node1], [node2, node3] ]
return fuse_by_partitions(self.graph_module, [list(partition.nodes) for partition in partitions])
def partition_and_fuse(self) -> GraphModule:
partitions = self.propose_partitions()
fused_gm = self.fuse_partitions(partitions)
return fused_gm