blob: f37d2e606d5fbebec304de539297f3e3e6af4c1a [file] [log] [blame]
#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "generic/SmoothL1Criterion.c"
#else
void THNN_(SmoothL1Criterion_updateOutput)(
THNNState *state,
THTensor *input,
THTensor *target,
THTensor *output,
bool sizeAverage,
bool reduce)
{
THNN_CHECK_NELEMENT(input, target);
if (!reduce) {
THTensor_(resizeAs)(output, input);
TH_TENSOR_APPLY3(real, input, real, target, real, output,
real z = fabs(*input_data - *target_data);
*output_data = z < 1 ? 0.5 * z * z : z - 0.5;
);
return;
}
THTensor_(resize1d)(output, 1);
real sum = 0;
TH_TENSOR_APPLY2(real, input, real, target,
real z = fabs(*input_data - *target_data);
sum += z < 1 ? 0.5*z*z : z - 0.5;
);
if (sizeAverage)
sum /= THTensor_(nElement)(input);
THTensor_(set1d)(output, 0, sum);
}
void THNN_(SmoothL1Criterion_updateGradInput)(
THNNState *state,
THTensor *input,
THTensor *target,
THTensor *gradOutput,
THTensor *gradInput,
bool sizeAverage,
bool reduce)
{
THNN_CHECK_NELEMENT(input, target);
THTensor_(resizeAs)(gradInput, input);
if (!reduce) {
THNN_CHECK_NELEMENT(gradOutput, input);
TH_TENSOR_APPLY3(real, gradInput, real, input, real, target,
real x = *input_data - *target_data;
if (x < -1.) {
*gradInput_data = -1.;
} else if (x > 1.) {
*gradInput_data = 1.;
} else {
*gradInput_data = x;
}
);
TH_TENSOR_APPLY2(real, gradInput, real, gradOutput,
*gradInput_data *= *gradOutput_data;
);
return;
}
THNN_CHECK_DIM_SIZE(gradOutput, 1, 0, 1);
real norm = (sizeAverage ? 1./((real)THTensor_(nElement)(input)) : 1.) * THTensor_fastGet1d(gradOutput, 0);
TH_TENSOR_APPLY3(real, gradInput, real, input, real, target,
real x = *input_data - *target_data;
if (x < -1.)
*gradInput_data = - norm;
else if (x > 1.)
*gradInput_data = norm;
else
*gradInput_data = norm * x;
);
}
#endif