| #include <cmath> |
| |
| #include "caffe2/core/context_gpu.h" |
| #include "caffe2/operators/elementwise_op.h" |
| |
| namespace caffe2 { |
| |
| template <typename T> |
| __global__ void CosKernel(const int N, const T* X, T* Y) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| Y[i] = cos(X[i]); |
| } |
| } |
| |
| template <typename T> |
| __global__ void CosGradientKernel(const int N, const T* X, const T* dY, T* dX) { |
| CUDA_1D_KERNEL_LOOP(i, N) { |
| dX[i] = -dY[i] * sin(X[i]); |
| } |
| } |
| |
| struct CosCUDAFunctor { |
| template <typename T> |
| inline void |
| operator()(const int n, const T* x, T* y, CUDAContext* device_context) { |
| CosKernel<T> |
| <<<CAFFE_GET_BLOCKS(n), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| device_context->cuda_stream()>>>(n, x, y); |
| return; |
| } |
| }; |
| |
| struct CosGradientCUDAFunctor { |
| template <typename T> |
| inline void Run( |
| const int n, |
| const T* x, |
| const T* dy, |
| T* dx, |
| CUDAContext* device_context) { |
| CosGradientKernel<T> |
| <<<CAFFE_GET_BLOCKS(n), |
| CAFFE_CUDA_NUM_THREADS, |
| 0, |
| device_context->cuda_stream()>>>(n, x, dy, dx); |
| return; |
| } |
| }; |
| |
| REGISTER_CUDA_OPERATOR( |
| Cos, |
| UnaryElementwiseOp<TensorTypes<float>, CUDAContext, CosCUDAFunctor>); |
| REGISTER_CUDA_OPERATOR( |
| CosGradient, |
| BinaryElementwiseOp< |
| TensorTypes<float>, |
| CUDAContext, |
| WithoutBroadcast<CosGradientCUDAFunctor>>); |
| } // namespace caffe2 |