| """Adds docstrings to functions defined in the torch._C""" |
| |
| import torch._C |
| from torch._C import _add_docstr as add_docstr |
| |
| add_docstr(torch._C.abs, |
| """abs(input, out=None) -> Tensor |
| |
| Computes the element-wise absolute value of the given :attr:`input` a tensor. |
| |
| Example:: |
| |
| >>> torch.abs(torch.FloatTensor([-1, -2, 3])) |
| FloatTensor([1, 2, 3]) |
| """) |
| |
| add_docstr(torch._C.acos, |
| """ |
| acos(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the arccosine of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.acos(a) |
| 2.2608 |
| 1.2956 |
| 1.1075 |
| nan |
| [torch.FloatTensor of size 4] |
| """) |
| |
| add_docstr(torch._C.add, |
| """ |
| .. function:: add(input, value, out=None) |
| |
| Adds the scalar :attr:`value` to each element of the input :attr:`input` |
| and returns a new resulting tensor. |
| |
| :math:`out = tensor + value` |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| value (float): the number to be added to each element of :attr:`input` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 0.4050 |
| -1.2227 |
| 1.8688 |
| -0.4185 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.add(a, 20) |
| |
| 20.4050 |
| 18.7773 |
| 21.8688 |
| 19.5815 |
| [torch.FloatTensor of size 4] |
| |
| |
| .. function:: add(input, value=1, other, out=None) |
| |
| Each element of the Tensor :attr:`other` is multiplied by the scalar |
| :attr:`value` and added to each element of the Tensor :attr:`input`. |
| The resulting Tensor is returned. |
| |
| The shapes of :attr:`input` and :attr:`other` don't need to match. |
| The total number of elements in each Tensor need to be the same. |
| |
| .. note:: When the shapes do not match, the shape of :attr:`input` |
| is used as the shape for the returned output Tensor |
| |
| :math:`out = input + (other * value)` |
| |
| Args: |
| input (Tensor): the first input `Tensor` |
| value (float): the scalar multiplier for :attr:`other` |
| other (Tensor): the second input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> import torch |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.9310 |
| 2.0330 |
| 0.0852 |
| -0.2941 |
| [torch.FloatTensor of size 4] |
| |
| >>> b = torch.randn(2, 2) |
| >>> b |
| |
| 1.0663 0.2544 |
| -0.1513 0.0749 |
| [torch.FloatTensor of size 2x2] |
| |
| >>> torch.add(a, 10, b) |
| 9.7322 |
| 4.5770 |
| -1.4279 |
| 0.4552 |
| [torch.FloatTensor of size 4] |
| |
| |
| """) |
| |
| add_docstr(torch._C.addbmm, |
| """ |
| addbmm(beta=1, mat, alpha=1, batch1, batch2, out=None) -> Tensor |
| |
| Performs a batch matrix-matrix product of matrices stored |
| in :attr:`batch1` and :attr:`batch2`, |
| with a reduced add step (all matrix multiplications get accumulated |
| along the first dimension). |
| :attr:`mat` is added to the final result. |
| |
| :attr:`batch1` and :attr:`batch2` must be 3D Tensors each containing the |
| same number of matrices. |
| |
| If :attr:`batch1` is a `b x n x m` Tensor, :attr:`batch2` is a `b x m x p` |
| Tensor, :attr:`out` and :attr:`mat` will be `n x p` Tensors. |
| |
| In other words, |
| :math:`res = (beta * M) + (alpha * sum(batch1_i @ batch2_i, i = 0, b))` |
| |
| Args: |
| beta (float, optional): multiplier for :attr:`mat` |
| mat (Tensor): matrix to be added |
| alpha (float, optional): multiplier for `batch1 @ batch2` |
| batch1 (Tensor): First batch of matrices to be multiplied |
| batch2 (Tensor): Second batch of matrices to be multiplied |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> M = torch.randn(3, 5) |
| >>> batch1 = torch.randn(10, 3, 4) |
| >>> batch2 = torch.randn(10, 4, 5) |
| >>> torch.addbmm(M, batch1, batch2) |
| |
| -3.1162 11.0071 7.3102 0.1824 -7.6892 |
| 1.8265 6.0739 0.4589 -0.5641 -5.4283 |
| -9.3387 -0.1794 -1.2318 -6.8841 -4.7239 |
| [torch.FloatTensor of size 3x5] |
| """) |
| |
| add_docstr(torch._C.addcdiv, |
| """ |
| addcdiv(tensor, value=1, tensor1, tensor2, out=None) -> Tensor |
| |
| Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`, |
| multiply the result by the scalar :attr:`value` and add it to :attr:`tensor`. |
| |
| The number of elements must match, but sizes do not matter. |
| |
| Args: |
| tensor (Tensor): the tensor to be added |
| value (float, optional): multiplier for `tensor1 ./ tensor2` |
| tensor1 (Tensor): Numerator tensor |
| tensor2 (Tensor): Denominator tensor |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> t = torch.randn(2, 3) |
| >>> t1 = torch.randn(1, 6) |
| >>> t2 = torch.randn(6, 1) |
| >>> torch.addcdiv(t, 0.1, t1, t2) |
| |
| 0.0122 -0.0188 -0.2354 |
| 0.7396 -1.5721 1.2878 |
| [torch.FloatTensor of size 2x3] |
| """) |
| |
| add_docstr(torch._C.addcmul, |
| """ |
| addcmul(tensor, value=1, tensor1, tensor2, out=None) -> Tensor |
| |
| Performs the element-wise multiplication of :attr:`tensor1` |
| by :attr:`tensor2`, multiply the result by the scalar :attr:`value` |
| and add it to :attr:`tensor`. |
| |
| The number of elements must match, but sizes do not matter. |
| |
| Args: |
| tensor (Tensor): the tensor to be added |
| value (float, optional): multiplier for `tensor1 .* tensor2` |
| tensor1 (Tensor): tensor to be multiplied |
| tensor2 (Tensor): tensor to be multiplied |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> t = torch.randn(2, 3) |
| >>> t1 = torch.randn(1, 6) |
| >>> t2 = torch.randn(6, 1) |
| >>> torch.addcmul(t, 0.1, t1, t2) |
| |
| 0.0122 -0.0188 -0.2354 |
| 0.7396 -1.5721 1.2878 |
| [torch.FloatTensor of size 2x3] |
| """) |
| |
| add_docstr(torch._C.addmm, |
| """ |
| addmm(beta=1, mat, alpha=1, mat1, mat2, out=None) -> Tensor |
| |
| Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. |
| The matrix :attr:`mat` is added to the final result. |
| |
| If :attr:`mat1` is a `n x m` Tensor, :attr:`mat2` is a `m x p` Tensor, |
| :attr:`out` and :attr:`mat` will be `n x p` Tensors. |
| |
| `alpha` and `beta` are scaling factors on `mat1 @ mat2` and `mat` respectively. |
| |
| In other words, |
| :math:`out = (beta * M) + (alpha * mat1 @ mat2)` |
| |
| Args: |
| beta (float, optional): multiplier for :attr:`mat` |
| mat (Tensor): matrix to be added |
| alpha (float, optional): multiplier for `mat1 @ mat2` |
| mat1 (Tensor): First matrix to be multiplied |
| mat2 (Tensor): Second matrix to be multiplied |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> M = torch.randn(2, 3) |
| >>> mat1 = torch.randn(2, 3) |
| >>> mat2 = torch.randn(3, 3) |
| >>> torch.addmm(M, mat1, mat2) |
| |
| -0.4095 -1.9703 1.3561 |
| 5.7674 -4.9760 2.7378 |
| [torch.FloatTensor of size 2x3] |
| """) |
| |
| add_docstr(torch._C.addmv, |
| """ |
| addmv(beta=1, tensor, alpha=1, mat, vec, out=None) -> Tensor |
| |
| Performs a matrix-vector product of the matrix :attr:`mat` and |
| the vector :attr:`vec`. |
| The vector :attr:`tensor` is added to the final result. |
| |
| If :attr:`mat` is a `n x m` Tensor, :attr:`vec` is a 1D Tensor of size `m`, |
| :attr:`out` and :attr:`tensor` will be 1D of size `n`. |
| |
| `alpha` and `beta` are scaling factors on `mat * vec` and `tensor` respectively. |
| |
| In other words: |
| |
| :math:`out = (beta * tensor) + (alpha * (mat @ vec2))` |
| |
| Args: |
| beta (float, optional): multiplier for :attr:`tensor` |
| tensor (Tensor): vector to be added |
| alpha (float, optional): multiplier for `mat @ vec` |
| mat (Tensor): matrix to be multiplied |
| vec (Tensor): vector to be multiplied |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> M = torch.randn(2) |
| >>> mat = torch.randn(2, 3) |
| >>> vec = torch.randn(3) |
| >>> torch.addmv(M, mat, vec) |
| |
| -2.0939 |
| -2.2950 |
| [torch.FloatTensor of size 2] |
| """) |
| |
| add_docstr(torch._C.addr, |
| """ |
| addr(beta=1, mat, alpha=1, vec1, vec2, out=None) -> Tensor |
| |
| Performs the outer-product between vectors :attr:`vec1` and :attr:`vec2` |
| and adds it to the matrix :attr:`mat`. |
| |
| Optional values :attr:`beta` and :attr:`alpha` are scalars that multiply |
| :attr:`mat` and `(vec1 [out] vec2)` respectively |
| |
| In other words, |
| |
| :math:`res_{ij} = (beta * mat_i_j) + (alpha * vec1_i @ vec2_j)` |
| |
| If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector of size `m`, |
| then :attr:`mat` must be a matrix of size `n x m` |
| |
| Args: |
| beta (float, optional): multiplier for :attr:`mat` |
| mat (Tensor): matrix to be added |
| alpha (float, optional): multiplier for `vec1 (out) vec2` |
| vec1 (Tensor): First vector of the outer product |
| vec2 (Tensor): Second vector of the outer product |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> vec1 = torch.range(1, 3) |
| >>> vec2 = torch.range(1, 2) |
| >>> M = torch.zeros(3, 2) |
| >>> torch.addr(M, vec1, vec2) |
| 1 2 |
| 2 4 |
| 3 6 |
| [torch.FloatTensor of size 3x2] |
| """) |
| |
| add_docstr(torch._C.asin, |
| """ |
| asin(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the arcsine of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.asin(a) |
| -0.6900 |
| 0.2752 |
| 0.4633 |
| nan |
| [torch.FloatTensor of size 4] |
| """) |
| |
| add_docstr(torch._C.atan, |
| """ |
| atan(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the arctangent of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.atan(a) |
| -0.5669 |
| 0.2653 |
| 0.4203 |
| 0.9196 |
| [torch.FloatTensor of size 4] |
| """) |
| |
| add_docstr(torch._C.atan2, |
| """ |
| atan2(input1, input2, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the arctangent of the elements of :attr:`input1` |
| and :attr:`input2`. |
| |
| Args: |
| input1 (Tensor): the first input `Tensor` |
| input2 (Tensor): the second input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.atan2(a, torch.randn(4)) |
| -2.4167 |
| 2.9755 |
| 0.9363 |
| 1.6613 |
| [torch.FloatTensor of size 4] |
| """) |
| |
| add_docstr(torch._C.baddbmm, |
| """ |
| baddbmm(beta=1, mat, alpha=1, batch1, batch2, out=None) -> Tensor |
| |
| Performs a batch matrix-matrix product of matrices in :attr:`batch1` |
| and :attr:`batch2`. |
| :attr:`mat` is added to the final result. |
| |
| :attr:`batch1` and :attr:`batch2` must be 3D Tensors each containing the same |
| number of matrices. |
| |
| If :attr:`batch1` is a `b x n x m` Tensor, :attr:`batch2` is a `b x m x p` |
| Tensor, :attr:`out` and :attr:`mat` will be `b x n x p` Tensors. |
| |
| In other words, |
| :math:`res_i = (beta * M_i) + (alpha * batch1_i @ batch2_i)` |
| |
| Args: |
| beta (float, optional): multiplier for :attr:`mat` |
| mat (Tensor): tensor to be added |
| alpha (float, optional): multiplier for `batch1 @ batch2` |
| batch1 (Tensor): First batch of matrices to be multiplied |
| batch2 (Tensor): Second batch of matrices to be multiplied |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> M = torch.randn(10, 3, 5) |
| >>> batch1 = torch.randn(10, 3, 4) |
| >>> batch2 = torch.randn(10, 4, 5) |
| >>> torch.baddbmm(M, batch1, batch2).size() |
| torch.Size([10, 3, 5]) |
| """) |
| |
| add_docstr(torch._C.bernoulli, |
| """ |
| bernoulli(input, out=None) -> Tensor |
| |
| Draws binary random numbers (0 or 1) from a bernoulli distribution. |
| |
| The :attr:`input` Tensor should be a tensor containing probabilities |
| to be used for drawing the binary random number. |
| Hence, all values in :attr:`input` have to be in the range: |
| :math:`0 <= input_i <= 1` |
| |
| The `i-th` element of the output tensor will draw a value `1` according |
| to the `i-th` probability value given in :attr:`input`. |
| |
| The returned :attr:`out` Tensor only has values 0 or 1 and is of the same |
| shape as :attr:`input` |
| |
| Args: |
| input (Tensor): Probability values for the bernoulli distribution |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> a = torch.Tensor(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1] |
| >>> a |
| |
| 0.7544 0.8140 0.9842 |
| 0.5282 0.0595 0.6445 |
| 0.1925 0.9553 0.9732 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> torch.bernoulli(a) |
| |
| 1 1 1 |
| 0 0 1 |
| 0 1 1 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> a = torch.ones(3, 3) # probability of drawing "1" is 1 |
| >>> torch.bernoulli(a) |
| |
| 1 1 1 |
| 1 1 1 |
| 1 1 1 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> a = torch.zeros(3, 3) # probability of drawing "1" is 0 |
| >>> torch.bernoulli(a) |
| |
| 0 0 0 |
| 0 0 0 |
| 0 0 0 |
| [torch.FloatTensor of size 3x3] |
| |
| """) |
| |
| add_docstr(torch._C.bmm, |
| """ |
| bmm(batch1, batch2, out=None) -> Tensor |
| |
| Performs a batch matrix-matrix product of matrices stored in :attr:`batch1` and :attr:`batch2`. |
| |
| :attr:`batch1` and :attr:`batch2` must be 3D Tensors each containing the same number of matrices. |
| |
| If :attr:`batch1` is a `b x n x m` Tensor, :attr:`batch2` is a `b x m x p` Tensor, |
| :attr:`out` will be a `b x n x p` Tensor. |
| |
| Args: |
| batch1 (Tensor): First batch of matrices to be multiplied |
| batch2 (Tensor): Second batch of matrices to be multiplied |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> batch1 = torch.randn(10, 3, 4) |
| >>> batch2 = torch.randn(10, 4, 5) |
| >>> res = torch.bmm(M, batch1, batch2) |
| >>> res.size() |
| torch.Size([10, 3, 5]) |
| """) |
| |
| add_docstr(torch._C.cat, |
| """ |
| cat(inputs, dimension=0) -> Tensor |
| |
| Concatenates the given sequence of :attr:`inputs` Tensors in the given dimension. |
| |
| :func:`torch.cat` can be seen as an inverse operation for :func:`torch.split` and :func:`torch.chunk` |
| |
| :func:`cat` can be best understood via examples. |
| |
| Args: |
| inputs (sequence of Tensors): Can be any python sequence of `Tensor` of the same type. |
| dimension (int, optional): The dimension over which the tensors are concatenated |
| |
| Example:: |
| |
| >>> x = torch.randn(2, 3) |
| >>> x |
| |
| 0.5983 -0.0341 2.4918 |
| 1.5981 -0.5265 -0.8735 |
| [torch.FloatTensor of size 2x3] |
| |
| >>> torch.cat((x, x, x), 0) |
| |
| 0.5983 -0.0341 2.4918 |
| 1.5981 -0.5265 -0.8735 |
| 0.5983 -0.0341 2.4918 |
| 1.5981 -0.5265 -0.8735 |
| 0.5983 -0.0341 2.4918 |
| 1.5981 -0.5265 -0.8735 |
| [torch.FloatTensor of size 6x3] |
| |
| >>> torch.cat((x, x, x), 1) |
| |
| 0.5983 -0.0341 2.4918 0.5983 -0.0341 2.4918 0.5983 -0.0341 2.4918 |
| 1.5981 -0.5265 -0.8735 1.5981 -0.5265 -0.8735 1.5981 -0.5265 -0.8735 |
| [torch.FloatTensor of size 2x9] |
| |
| """) |
| |
| add_docstr(torch._C.ceil, |
| """ |
| ceil(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the ceil of the elements of :attr:`input`, the smallest integer greater than or equal to each element. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.ceil(a) |
| |
| 2 |
| 1 |
| -0 |
| -0 |
| [torch.FloatTensor of size 4] |
| |
| """) |
| |
| add_docstr(torch._C.cinv, |
| """ |
| cinv(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the scalar inverse of the elements of :attr:`input`, i.e. :math:`1.0 / x` |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.cinv(a) |
| |
| 0.7210 |
| 2.5565 |
| -1.1583 |
| -1.8289 |
| [torch.FloatTensor of size 4] |
| |
| """) |
| |
| add_docstr(torch._C.clamp, |
| """ |
| clamp(input, min, max, out=None) -> Tensor |
| |
| Clamp all elements in :attr:`input` into the range `[min, max]` and return a resulting Tensor. |
| |
| :: |
| |
| | min, if x_i < min |
| y_i = | x_i, if min <= x_i <= max |
| | max, if x_i > max |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| min (float): lower-bound of the range to be clamped to |
| max (float): upper-bound of the range to be clamped to |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.clamp(a, min=-0.5, max=0.5) |
| |
| 0.5000 |
| 0.3912 |
| -0.5000 |
| -0.5000 |
| [torch.FloatTensor of size 4] |
| |
| """) |
| |
| add_docstr(torch._C.cmax, |
| """ |
| .. function:: cmax(input, value, out=None) -> Tensor |
| |
| Takes the element-wise `max` of the scalar :attr:`value` and each element of the input :attr:`input` and returns a new tensor with the result. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| value (float): the scalar to be compared with |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.cmax(a, 0.5) |
| |
| 1.3869 |
| 0.5000 |
| 0.5000 |
| 0.5000 |
| [torch.FloatTensor of size 4] |
| |
| |
| .. function:: cmax(input, other, out=None) -> Tensor |
| |
| Each element of the Tensor :attr:`other` is compared with the corresponding element of the Tensor :attr:`input` |
| and an element-wise `max` is taken. The resulting Tensor is returned. |
| |
| The shapes of :attr:`input` and :attr:`other` don't need to match. The total number of elements in each Tensor need to be the same. |
| |
| .. note:: When the shapes do not match, the shape of :attr:`input` is used as the shape for the returned output Tensor |
| |
| :math:`out_i = max(tensor_i, other_i)` |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| other (Tensor): the second input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size 4] |
| |
| >>> b = torch.randn(4) |
| >>> b |
| |
| 1.0067 |
| -0.8010 |
| 0.6258 |
| 0.3627 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.cmax(a, b) |
| |
| 1.3869 |
| 0.3912 |
| 0.6258 |
| 0.3627 |
| [torch.FloatTensor of size 4] |
| |
| """) |
| |
| add_docstr(torch._C.cmin, |
| """ |
| .. function:: cmin(input, value, out=None) -> Tensor |
| |
| Takes the element-wise `min` of the scalar :attr:`value` and each element of the input :attr:`input` and returns a new tensor with the result. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| value (float): the scalar to be compared with |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.cmin(a, 0.5) |
| |
| 0.5000 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size 4] |
| |
| |
| .. function:: cmin(input, other, out=None) -> Tensor |
| |
| Each element of the Tensor :attr:`other` is compared with the corresponding element of the Tensor :attr:`input` |
| and an element-wise `min` is taken. The resulting Tensor is returned. |
| |
| The shapes of :attr:`input` and :attr:`other` don't need to match. The total number of elements in each Tensor need to be the same. |
| |
| .. note:: When the shapes do not match, the shape of :attr:`input` is used as the shape for the returned output Tensor |
| |
| :math:`out_i = min(tensor_i, other_i)` |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| other (Tensor): the second input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size 4] |
| |
| >>> b = torch.randn(4) |
| >>> b |
| |
| 1.0067 |
| -0.8010 |
| 0.6258 |
| 0.3627 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.cmin(a, b) |
| |
| 1.0067 |
| -0.8010 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size 4] |
| |
| """) |
| |
| add_docstr(torch._C.cos, |
| """ |
| cos(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the cosine of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.cos(a) |
| 0.8041 |
| 0.9633 |
| 0.9018 |
| 0.2557 |
| [torch.FloatTensor of size 4] |
| """) |
| |
| add_docstr(torch._C.cosh, |
| """ |
| cosh(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the hyperbolic cosine of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.cosh(a) |
| 1.2095 |
| 1.0372 |
| 1.1015 |
| 1.9917 |
| [torch.FloatTensor of size 4] |
| """) |
| |
| add_docstr(torch._C.cross, |
| """ |
| cross(input, other, dim=-1, out=None) -> Tensor |
| |
| |
| Returns the cross product of vectors in dimension :attr:`dim` of :attr:`input` and :attr:`other`. |
| |
| :attr:`input` and :attr:`other` must have the same size, and the size of their :attr:`dim` dimension should be 3. |
| |
| If :attr:`dim` is not given, it defaults to the first dimension found with the size 3. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| other (Tensor): the second input `Tensor` |
| dim (long, optional): the dimension to take the cross-product in. |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 3) |
| >>> a |
| |
| -0.6652 -1.0116 -0.6857 |
| 0.2286 0.4446 -0.5272 |
| 0.0476 0.2321 1.9991 |
| 0.6199 1.1924 -0.9397 |
| [torch.FloatTensor of size 4x3] |
| |
| >>> b = torch.randn(4, 3) |
| >>> b |
| |
| -0.1042 -1.1156 0.1947 |
| 0.9947 0.1149 0.4701 |
| -1.0108 0.8319 -0.0750 |
| 0.9045 -1.3754 1.0976 |
| [torch.FloatTensor of size 4x3] |
| |
| >>> torch.cross(a, b, dim=1) |
| |
| -0.9619 0.2009 0.6367 |
| 0.2696 -0.6318 -0.4160 |
| -1.6805 -2.0171 0.2741 |
| 0.0163 -1.5304 -1.9311 |
| [torch.FloatTensor of size 4x3] |
| |
| >>> torch.cross(a, b) |
| |
| -0.9619 0.2009 0.6367 |
| 0.2696 -0.6318 -0.4160 |
| -1.6805 -2.0171 0.2741 |
| 0.0163 -1.5304 -1.9311 |
| [torch.FloatTensor of size 4x3] |
| """) |
| |
| add_docstr(torch._C.cumprod, |
| """ |
| cumprod(input, dim, out=None) -> Tensor |
| |
| Returns the cumulative product of elements of :attr:`input` in the dimension :attr:`dim`. |
| |
| For example, if :attr:`input` is a vector of size N, the result will also be a vector of size N, with elements: |
| :math:`y_i = x_1 * x_2 * x_3 * ... * x_i` |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim (int): the dimension to do the operation over |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(10) |
| >>> a |
| |
| 1.1148 |
| 1.8423 |
| 1.4143 |
| -0.4403 |
| 1.2859 |
| -1.2514 |
| -0.4748 |
| 1.1735 |
| -1.6332 |
| -0.4272 |
| [torch.FloatTensor of size 10] |
| |
| >>> torch.cumprod(a, dim=0) |
| |
| 1.1148 |
| 2.0537 |
| 2.9045 |
| -1.2788 |
| -1.6444 |
| 2.0578 |
| -0.9770 |
| -1.1466 |
| 1.8726 |
| -0.8000 |
| [torch.FloatTensor of size 10] |
| |
| >>> a[5] = 0.0 |
| >>> torch.cumprod(a, dim=0) |
| |
| 1.1148 |
| 2.0537 |
| 2.9045 |
| -1.2788 |
| -1.6444 |
| -0.0000 |
| 0.0000 |
| 0.0000 |
| -0.0000 |
| 0.0000 |
| [torch.FloatTensor of size 10] |
| |
| """) |
| |
| add_docstr(torch._C.cumsum, |
| """ |
| cumsum(input, dim, out=None) -> Tensor |
| |
| Returns the cumulative sum of elements of :attr:`input` in the dimension :attr:`dim`. |
| |
| For example, if :attr:`input` is a vector of size N, the result will also be a vector of size N, with elements: |
| :math:`y_i = x_1 + x_2 + x_3 + ... + x_i` |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim (int): the dimension to do the operation over |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(10) |
| >>> a |
| |
| -0.6039 |
| -0.2214 |
| -0.3705 |
| -0.0169 |
| 1.3415 |
| -0.1230 |
| 0.9719 |
| 0.6081 |
| -0.1286 |
| 1.0947 |
| [torch.FloatTensor of size 10] |
| |
| >>> torch.cumsum(a, dim=0) |
| |
| -0.6039 |
| -0.8253 |
| -1.1958 |
| -1.2127 |
| 0.1288 |
| 0.0058 |
| 0.9777 |
| 1.5858 |
| 1.4572 |
| 2.5519 |
| [torch.FloatTensor of size 10] |
| |
| |
| """) |
| |
| add_docstr(torch._C.diag, |
| """ |
| diag(input, diagonal=0, out=None) -> Tensor |
| |
| - If :attr:`input` is a vector (1D Tensor), then returns a 2D square Tensor with the elements of :attr:`input` as the diagonal. |
| - If :attr:`input` is a matrix (2D Tensor), then returns a 1D Tensor with the diagonal elements of :attr:`input`. |
| |
| The argument :attr:`diagonal` controls which diagonal to consider. |
| |
| - :attr:`diagonal` = 0, is the main diagonal. |
| - :attr:`diagonal` > 0, is above the main diagonal. |
| - :attr:`diagonal` < 0, is below the main diagonal. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| diagonal (long, optional): the diagonal to consider |
| out (Tensor, optional): The result `Tensor` |
| |
| Example: |
| |
| Get the square matrix where the input vector is the diagonal:: |
| |
| >>> a = torch.randn(3) |
| >>> a |
| |
| 1.0480 |
| -2.3405 |
| -1.1138 |
| [torch.FloatTensor of size 3] |
| |
| >>> torch.diag(a) |
| |
| 1.0480 0.0000 0.0000 |
| 0.0000 -2.3405 0.0000 |
| 0.0000 0.0000 -1.1138 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> torch.diag(a, 1) |
| |
| 0.0000 1.0480 0.0000 0.0000 |
| 0.0000 0.0000 -2.3405 0.0000 |
| 0.0000 0.0000 0.0000 -1.1138 |
| 0.0000 0.0000 0.0000 0.0000 |
| [torch.FloatTensor of size 4x4] |
| |
| |
| Get the k-th diagonal of a given matrix:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a |
| |
| -1.5328 -1.3210 -1.5204 |
| 0.8596 0.0471 -0.2239 |
| -0.6617 0.0146 -1.0817 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> torch.diag(a, 0) |
| |
| -1.5328 |
| 0.0471 |
| -1.0817 |
| [torch.FloatTensor of size 3] |
| |
| >>> torch.diag(a, 1) |
| |
| -1.3210 |
| -0.2239 |
| [torch.FloatTensor of size 2] |
| |
| """) |
| |
| add_docstr(torch._C.dist, |
| """ |
| dist(input, other, p=2, out=None) -> Tensor |
| |
| Returns the p-norm of (:attr:`input` - :attr:`other`) |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| other (Tensor): the Right-hand-side input `Tensor` |
| p (float, optional): The norm to be computed. |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> x = torch.randn(4) |
| >>> x |
| |
| 0.2505 |
| -0.4571 |
| -0.3733 |
| 0.7807 |
| [torch.FloatTensor of size 4] |
| |
| >>> y = torch.randn(4) |
| >>> y |
| |
| 0.7782 |
| -0.5185 |
| 1.4106 |
| -2.4063 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.dist(x, y, 3.5) |
| 3.302832063224223 |
| >>> torch.dist(x, y, 3) |
| 3.3677282206393286 |
| >>> torch.dist(x, y, 0) |
| inf |
| >>> torch.dist(x, y, 1) |
| 5.560028076171875 |
| |
| |
| """) |
| |
| add_docstr(torch._C.div, |
| """ |
| .. function:: div(input, value, out=None) |
| |
| Divides each element of the input :attr:`input` with the scalar :attr:`value` and returns a new resulting tensor. |
| |
| :math:`out = tensor / value` |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| value (float): the number to be divided to each element of :attr:`input` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| |
| -0.6147 |
| -1.1237 |
| -0.1604 |
| -0.6853 |
| 0.1063 |
| [torch.FloatTensor of size 5] |
| |
| >>> torch.div(a, 0.5) |
| |
| -1.2294 |
| -2.2474 |
| -0.3208 |
| -1.3706 |
| 0.2126 |
| [torch.FloatTensor of size 5] |
| |
| |
| .. function:: div(input, other, out=None) |
| |
| Each element of the Tensor :attr:`input` is divided by each element of the Tensor :attr:`other`. The resulting Tensor is returned. |
| The shapes of :attr:`input` and :attr:`other` don't need to match. The total number of elements in each Tensor need to be the same. |
| |
| .. note:: When the shapes do not match, the shape of :attr:`input` is used as the shape for the returned output Tensor |
| |
| :math:`out_i = input_i / other_i` |
| |
| Args: |
| input (Tensor): the numerator `Tensor` |
| other (Tensor): the denominator `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4,4) |
| >>> a |
| |
| -0.1810 0.4017 0.2863 -0.1013 |
| 0.6183 2.0696 0.9012 -1.5933 |
| 0.5679 0.4743 -0.0117 -0.1266 |
| -0.1213 0.9629 0.2682 1.5968 |
| [torch.FloatTensor of size 4x4] |
| |
| >>> b = torch.randn(8, 2) |
| >>> b |
| |
| 0.8774 0.7650 |
| 0.8866 1.4805 |
| -0.6490 1.1172 |
| 1.4259 -0.8146 |
| 1.4633 -0.1228 |
| 0.4643 -0.6029 |
| 0.3492 1.5270 |
| 1.6103 -0.6291 |
| [torch.FloatTensor of size 8x2] |
| |
| >>> torch.div(a, b) |
| |
| -0.2062 0.5251 0.3229 -0.0684 |
| -0.9528 1.8525 0.6320 1.9559 |
| 0.3881 -3.8625 -0.0253 0.2099 |
| -0.3473 0.6306 0.1666 -2.5381 |
| [torch.FloatTensor of size 4x4] |
| |
| |
| """) |
| |
| add_docstr(torch._C.dot, |
| """ |
| dot(tensor1, tensor2) -> float |
| |
| Computes the dot product (inner product) of two tensors. Both tensors are |
| treated as 1-D vectors. |
| |
| Example:: |
| |
| >>> torch.dot(torch.Tensor([2, 3]), torch.Tensor([2, 1])) |
| 7.0 |
| """) |
| |
| add_docstr(torch._C.eig, |
| """ |
| eig(a, eigenvectors=False, out=None) -> (Tensor, Tensor) |
| |
| Computes the eigenvalues and eigenvectors of a real square matrix. |
| |
| Args: |
| a (Tensor): A square matrix for which the eigenvalues and eigenvectors will |
| be computed |
| eigenvectors (bool): `True` to compute both eigenvalues and eigenvectors. |
| Otherwise, only eigenvalues will be computed. |
| out (tuple, optional): Output tensors |
| |
| Returns: |
| (Tensor, Tensor): tuple containing |
| |
| - **e** (*Tensor*): the right eigenvalues of ``a`` |
| - **v** (*Tensor*): the eigenvectors of ``a`` if ``eigenvectors` is ``True``; otherwise an empty tensor |
| """) |
| |
| add_docstr(torch._C.eq, |
| """ |
| eq(input, other, out=None) -> Tensor |
| |
| Computes element-wise equality |
| |
| The second argument can be a number or a tensor of the same shape and |
| type as the first argument. |
| |
| Args: |
| input (Tensor): Tensor to compare |
| other (Tensor or float): Tensor or value to compare |
| out (Tensor, optional): Output tensor. Must be a `ByteTensor` or the same type as `tensor`. |
| |
| Returns: |
| Tensor: a ``torch.ByteTensor`` containing a 1 at each location where the tensors are equal and a 0 at every other location |
| |
| Example:: |
| |
| >>> torch.eq(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) |
| 1 0 |
| 0 1 |
| [torch.ByteTensor of size 2x2] |
| """) |
| |
| add_docstr(torch._C.equal, |
| """ |
| equal(tensor1, tensor2) -> bool |
| |
| True if two tensors have the same size and elements, False otherwise. |
| |
| Example:: |
| |
| >>> torch.equal(torch.Tensor([1, 2]), torch.Tensor([1, 2])) |
| True |
| """) |
| |
| add_docstr(torch._C.exp, |
| """ |
| exp(tensor, out=None) -> Tensor |
| |
| Computes the exponential of each element. |
| |
| Example:: |
| |
| >>> torch.exp(torch.Tensor([0, math.log(2)])) |
| torch.FloatTensor([1, 2]) |
| """) |
| |
| add_docstr(torch._C.eye, |
| """ |
| eye(n, m=None, out=None) |
| |
| Returns a 2-D tensor with ones on the diagonal and zeros elsewhere. |
| |
| Args: |
| n (int): Number of rows |
| m (int, optional): Number of columns. If None, defaults to `n` |
| out (Tensor, optional): Output tensor |
| |
| Returns: |
| Tensor: a 2-D tensor with ones on the diagonal and zeros elsewhere |
| |
| Example:: |
| |
| >>> torch.eye(3) |
| 1 0 0 |
| 0 1 0 |
| 0 0 1 |
| [torch.FloatTensor of size 3x3] |
| """) |
| |
| add_docstr(torch._C.floor, |
| """ |
| floor(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the floor of the elements of :attr:`input`, the largest integer less than or equal to each element. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.3869 |
| 0.3912 |
| -0.8634 |
| -0.5468 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.floor(a) |
| |
| 1 |
| 0 |
| -1 |
| -1 |
| [torch.FloatTensor of size 4] |
| |
| |
| """) |
| |
| add_docstr(torch._C.fmod, |
| """ |
| fmod(input, divisor, out=None) -> Tensor |
| |
| Computes the element-wise remainder of division. |
| |
| The dividend and divisor may contain both for integer and floating point |
| numbers. The remainder has the same sign as the dividend `tensor`. |
| |
| Args: |
| input (Tensor): The dividend |
| divisor (Tensor or float): The divisor. This may be either a number or a |
| tensor of the same shape as the dividend. |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> torch.fmod(torch.Tensor([-3, -2, -1, 1, 2, 3]), 2) |
| torch.FloatTensor([-1, -0, -1, 1, 0, 1]) |
| >>> torch.fmod(torch.Tensor([1, 2, 3, 4, 5]), 1.5) |
| torch.FloatTensor([1.0, 0.5, 0.0, 1.0, 0.5]) |
| |
| .. seealso:: |
| |
| :func:`torch.remainder`, which computes the element-wise remainder of |
| division equivalently to Python's `%` operator |
| """) |
| |
| add_docstr(torch._C.frac, |
| """ |
| frac(tensor, out=None) -> Tensor |
| |
| Computes the fractional portion of each element in `tensor`. |
| |
| Example:: |
| |
| >>> torch.frac(torch.Tensor([1, 2.5, -3.2]) |
| torch.FloatTensor([0, 0.5, -0.2]) |
| """) |
| |
| add_docstr(torch._C.from_numpy, |
| """ |
| from_numpy(ndarray) -> Tensor |
| |
| Creates a :class:`Tensor` from a :class:`numpy.ndarray`. |
| |
| The returned tensor and `ndarray` share the same memory. Modifications to the |
| tensor will be reflected in the `ndarray` and vice versa. The returned tensor |
| is not resizable. |
| |
| Example:: |
| |
| >>> a = numpy.array([1, 2, 3]) |
| >>> t = torch.from_numpy(a) |
| >>> t |
| torch.LongTensor([1, 2, 3]) |
| >>> t[0] = -1 |
| >>> a |
| array([-1, 2, 3]) |
| """) |
| |
| add_docstr(torch._C.gather, |
| """ |
| gather(input, dim, index, out=None) -> Tensor |
| |
| Gathers values along an axis specified by `dim`. |
| |
| For a 3-D tensor the output is specified by:: |
| |
| out[i][j][k] = tensor[index[i][j][k]][j][k] # dim=0 |
| out[i][j][k] = tensor[i][index[i][j][k]][k] # dim=1 |
| out[i][j][k] = tensor[i][j][index[i][j][k]] # dim=3 |
| |
| Args: |
| input (Tensor): The source tensor |
| dim (int): The axis along which to index |
| index (LongTensor): The indices of elements to gather |
| out (Tensor, optional): Destination tensor |
| |
| Example:: |
| |
| >>> t = torch.Tensor([[1,2],[3,4]]) |
| >>> torch.gather(t, 1, torch.LongTensor([[0,0],[1,0]])) |
| 1 1 |
| 4 3 |
| [torch.FloatTensor of size 2x2] |
| """) |
| |
| add_docstr(torch._C.ge, |
| """ |
| ge(input, other, out=None) -> Tensor |
| |
| Computes `tensor >= other` element-wise. |
| |
| The second argument can be a number or a tensor of the same shape and |
| type as the first argument. |
| |
| Args: |
| input (Tensor): Tensor to compare |
| other (Tensor or float): Tensor or value to compare |
| out (Tensor, optional): Output tensor. Must be a `ByteTensor` or the same type as `tensor`. |
| |
| Returns: |
| Tensor: a ``torch.ByteTensor`` containing a 1 at each location where comparison is true. |
| |
| Example:: |
| |
| >>> torch.ge(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) |
| 1 1 |
| 0 1 |
| [torch.ByteTensor of size 2x2] |
| """) |
| |
| add_docstr(torch._C.gels, |
| r""" |
| gels(B, A, out=None) -> Tensor |
| |
| Computes the solution to the least squares and least norm problems for a full |
| rank :math:`m` by :math:`n` matrix :math:`A`. |
| |
| If :math:`m >= n`, :func:`gels` solves the least-squares problem: |
| |
| .. math:: |
| |
| \begin{array}{ll} |
| \mbox{minimize} & \|AX-B\|_F. |
| \end{array} |
| |
| If :math:`m < n`, :func:`gels` solves the least-norm problem: |
| |
| .. math:: |
| |
| \begin{array}{ll} |
| \mbox{minimize} & \|X\|_F & \mbox{subject to} & AX = B. |
| \end{array} |
| |
| The first :math:`n` rows of the returned matrix :math:`X` contains the |
| solution. The remaining rows contain residual information: the euclidean norm |
| of each column starting at row :math:`n` is the residual for the corresponding |
| column. |
| |
| Args: |
| B (Tensor): The matrix :math:`B` |
| A (Tensor): The :math:`m` by :math:`n` matrix :math:`A` |
| out (tuple, optional): Optional destination tensor |
| |
| Returns: |
| (Tensor, Tensor): tuple containing: |
| |
| - **X** (*Tensor*): the least squares solution |
| - **qr** (*Tensor*): the details of the QR factorization |
| |
| .. note:: |
| |
| The returned matrices will always be tranposed, irrespective of the strides |
| of the input matrices. That is, they will have stride `(1, m)` instead of |
| `(m, 1)`. |
| |
| Example:: |
| |
| |
| >>> A = torch.Tensor([[1, 1, 1], |
| ... [2, 3, 4], |
| ... [3, 5, 2], |
| ... [4, 2, 5], |
| ... [5, 4, 3]]) |
| >>> B = torch.Tensor([[-10, -3], |
| [ 12, 14], |
| [ 14, 12], |
| [ 16, 16], |
| [ 18, 16]]) |
| >>> X, _ = torch.gels(B, A) |
| >>> X |
| 2.0000 1.0000 |
| 1.0000 1.0000 |
| 1.0000 2.0000 |
| [torch.FloatTensor of size 3x2] |
| """) |
| |
| add_docstr(torch._C.geqrf, |
| """ |
| """) |
| |
| add_docstr(torch._C.ger, |
| """ |
| """) |
| |
| add_docstr(torch._C.gesv, |
| """ |
| """) |
| |
| add_docstr(torch._C.get_num_threads, |
| """ |
| get_num_threads() -> int |
| |
| Gets the number of OpenMP threads used for parallelizing CPU operations |
| """) |
| |
| add_docstr(torch._C.gt, |
| """ |
| gt(input, other, out=None) -> Tensor |
| |
| Computes `tensor > other` element-wise. |
| |
| The second argument can be a number or a tensor of the same shape and |
| type as the first argument. |
| |
| Args: |
| input (Tensor): Tensor to compare |
| other (Tensor or float): Tensor or value to compare |
| out (Tensor, optional): Output tensor. Must be a `ByteTensor` or the same type as `tensor`. |
| |
| Returns: |
| Tensor: a ``torch.ByteTensor`` containing a 1 at each location where comparison is true. |
| |
| Example:: |
| |
| >>> torch.gt(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) |
| 0 1 |
| 0 0 |
| [torch.ByteTensor of size 2x2] |
| """) |
| |
| add_docstr(torch._C.histc, |
| """ |
| histc(input, bins=100, min=0, max=0, out=None) -> Tensor |
| |
| Computes the histogram of a tensor. |
| |
| The elements are sorted into equal width bins between `min` and `max`. If `min` |
| and `max` are both zero, the minimum and maximum values of the data are used. |
| |
| Args: |
| input (Tensor): Input data |
| bins (int): Number of histogram bins |
| min (int): Lower end of the range (inclusive) |
| max (int): Upper end of the range (inclusive) |
| out (Tensor, optional): Output argument |
| |
| Returns: |
| Tensor: the histogram |
| |
| Example:: |
| |
| >>> torch.histc(torch.FloatTensor([1, 2, 1]), bins=4, min=0, max=3) |
| FloatTensor([0, 2, 1, 0]) |
| |
| """) |
| |
| add_docstr(torch._C.index_select, |
| """ |
| index_select(input, dim, index, out=None) -> Tensor |
| |
| Returns a new `Tensor` which indexes the :attr:`input` `Tensor` along dimension :attr:`dim` |
| using the entries in :attr:`index` which is a `LongTensor`. |
| |
| The returned `Tensor` has the same number of dimensions as the original `Tensor`. |
| |
| .. note:: The returned `Tensor` does **not** use the same storage as the original `Tensor` |
| |
| Args: |
| input (Tensor): Input data |
| dim (int): the dimension in which we index |
| index (LongTensor): the 1D tensor containing the indices to index |
| out (Tensor, optional): Output argument |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 4) |
| >>> x |
| |
| 1.2045 2.4084 0.4001 1.1372 |
| 0.5596 1.5677 0.6219 -0.7954 |
| 1.3635 -1.2313 -0.5414 -1.8478 |
| [torch.FloatTensor of size 3x4] |
| |
| >>> indices = torch.LongTensor([0, 2]) |
| >>> torch.index_select(x, 0, indices) |
| |
| 1.2045 2.4084 0.4001 1.1372 |
| 1.3635 -1.2313 -0.5414 -1.8478 |
| [torch.FloatTensor of size 2x4] |
| |
| >>> torch.index_select(x, 1, indices) |
| |
| 1.2045 0.4001 |
| 0.5596 0.6219 |
| 1.3635 -0.5414 |
| [torch.FloatTensor of size 3x2] |
| |
| """) |
| |
| add_docstr(torch._C.inverse, |
| """ |
| """) |
| |
| add_docstr(torch._C.kthvalue, |
| """ |
| kthvalue(input, k, dim=None, out=None) -> (Tensor, LongTensor) |
| |
| Returns the :attr:`k`th smallest element of the given :attr:`input` Tensor along a given dimension. |
| |
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. |
| |
| A tuple of `(values, indices)` is returned, where the `indices` is the indices of |
| the kth-smallest element in the original `input` Tensor in dimention `dim`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| k (int): k for the k-th smallest element |
| dim (int, optional): The dimension to sort along |
| out (tuple, optional): The output tuple of (Tensor, LongTensor) |
| can be optionally given to be used as output buffers |
| |
| Example:: |
| |
| >>> x = torch.range(1, 5) |
| >>> x |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| [torch.FloatTensor of size 5] |
| |
| >>> torch.kthvalue(x, 4) |
| ( |
| 4 |
| [torch.FloatTensor of size 1] |
| , |
| 3 |
| [torch.LongTensor of size 1] |
| ) |
| |
| """) |
| |
| add_docstr(torch._C.le, |
| """ |
| le(input, other, out=None) -> Tensor |
| |
| Computes `tensor <= other` element-wise. |
| |
| The second argument can be a number or a tensor of the same shape and |
| type as the first argument. |
| |
| Args: |
| input (Tensor): Tensor to compare |
| other (Tensor or float): Tensor or value to compare |
| out (Tensor, optional): Output tensor. Must be a `ByteTensor` or the same type as `tensor`. |
| |
| Returns: |
| Tensor: a ``torch.ByteTensor`` containing a 1 at each location where comparison is true. |
| |
| Example:: |
| |
| >>> torch.le(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) |
| 1 0 |
| 1 1 |
| [torch.ByteTensor of size 2x2] |
| """) |
| |
| add_docstr(torch._C.lerp, |
| """ |
| lerp(start, end, weight, out=None) |
| |
| Does a linear interpolation of two tensors :attr:`start` and :attr:`end` based on a scalar :attr:`weight`: and returns the resulting :attr:`out` Tensor. |
| |
| :math:`out_i = start_i + weight * (end_i - start_i)` |
| |
| Args: |
| start (Tensor): the `Tensor` with the starting points |
| end (Tensor): the `Tensor` with the ending points |
| weight (float): the weight for the interpolation formula |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> start = torch.range(1, 4) |
| >>> end = torch.Tensor(4).fill_(10) |
| >>> start |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| [torch.FloatTensor of size 4] |
| |
| >>> end |
| |
| 10 |
| 10 |
| 10 |
| 10 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.lerp(start, end, 0.5) |
| |
| 5.5000 |
| 6.0000 |
| 6.5000 |
| 7.0000 |
| [torch.FloatTensor of size 4] |
| |
| """) |
| |
| add_docstr(torch._C.linspace, |
| """ |
| linspace(start, end, steps=100, out=None) -> Tensor |
| |
| Returns a one-dimensional Tensor of :attr:`steps` |
| equally spaced points between :attr:`start` and :attr:`end` |
| |
| The output tensor is 1D of size :attr:`steps` |
| |
| Args: |
| start (float): The starting value for the set of points |
| end (float): The ending value for the set of points |
| steps (int): Number of points to sample between :attr:`start` and :attr:`end` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> torch.linspace(3, 10, steps=5) |
| |
| 3.0000 |
| 4.7500 |
| 6.5000 |
| 8.2500 |
| 10.0000 |
| [torch.FloatTensor of size 5] |
| |
| >>> torch.linspace(-10, 10, steps=5) |
| |
| -10 |
| -5 |
| 0 |
| 5 |
| 10 |
| [torch.FloatTensor of size 5] |
| |
| >>> torch.linspace(start=-10, end=10, steps=5) |
| |
| -10 |
| -5 |
| 0 |
| 5 |
| 10 |
| [torch.FloatTensor of size 5] |
| |
| """) |
| |
| add_docstr(torch._C.log, |
| """ |
| log(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the natural logarithm of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| |
| -0.4183 |
| 0.3722 |
| -0.3091 |
| 0.4149 |
| 0.5857 |
| [torch.FloatTensor of size 5] |
| |
| >>> torch.log(a) |
| |
| nan |
| -0.9883 |
| nan |
| -0.8797 |
| -0.5349 |
| [torch.FloatTensor of size 5] |
| |
| """) |
| |
| add_docstr(torch._C.log1p, |
| """ |
| log1p(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the natural logarithm of (1 + :attr:`input`). |
| |
| :math:`y_i = log(x_i + 1)` |
| |
| .. note:: This function is more accurate than :func:`torch.log` for small values of :attr:`input` |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| |
| -0.4183 |
| 0.3722 |
| -0.3091 |
| 0.4149 |
| 0.5857 |
| [torch.FloatTensor of size 5] |
| |
| >>> torch.log1p(a) |
| |
| -0.5418 |
| 0.3164 |
| -0.3697 |
| 0.3471 |
| 0.4611 |
| [torch.FloatTensor of size 5] |
| |
| """) |
| |
| add_docstr(torch._C.logspace, |
| """ |
| logspace(start, end, steps=100, out=None) -> Tensor |
| |
| Returns a one-dimensional Tensor of :attr:`steps` |
| logirathmically equally spaced points between :math:`10^{start}` and :math:`10^{end}` |
| |
| The output tensor is 1D of size :attr:`steps` |
| |
| Args: |
| start (float): The starting value for the set of points |
| end (float): The ending value for the set of points |
| steps (int): Number of points to sample between :attr:`start` and :attr:`end` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> torch.logspace(start=-10, end=10, steps=5) |
| |
| 1.0000e-10 |
| 1.0000e-05 |
| 1.0000e+00 |
| 1.0000e+05 |
| 1.0000e+10 |
| [torch.FloatTensor of size 5] |
| |
| >>> torch.logspace(start=0.1, end=1.0, steps=5) |
| |
| 1.2589 |
| 2.1135 |
| 3.5481 |
| 5.9566 |
| 10.0000 |
| [torch.FloatTensor of size 5] |
| |
| """) |
| |
| add_docstr(torch._C.lt, |
| """ |
| lt(input, other, out=None) -> Tensor |
| |
| Computes `tensor < other` element-wise. |
| |
| The second argument can be a number or a tensor of the same shape and |
| type as the first argument. |
| |
| Args: |
| input (Tensor): Tensor to compare |
| other (Tensor or float): Tensor or value to compare |
| out (Tensor, optional): Output tensor. Must be a `ByteTensor` or the same type as `tensor`. |
| |
| Returns: |
| Tensor: a ``torch.ByteTensor`` containing a 1 at each location where comparison is true. |
| |
| Example:: |
| |
| >>> torch.lt(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) |
| 0 0 |
| 1 0 |
| [torch.ByteTensor of size 2x2] |
| """) |
| |
| add_docstr(torch._C.masked_select, |
| """ |
| masked_select(input, mask, out=None) -> Tensor |
| |
| Returns a new 1D `Tensor` which indexes the :attr:`input` `Tensor` according to the binary mask :attr:`mask` which is a `ByteTensor`. |
| |
| The :attr:`mask` tensor needs to have the same number of elements as :attr:`input`, but it's shape or dimensionality are irrelevant. |
| |
| .. note:: The returned `Tensor` does **not** use the same storage as the original `Tensor` |
| |
| Args: |
| input (Tensor): Input data |
| mask (ByteTensor): the tensor containing the binary mask to index with |
| out (Tensor, optional): Output argument |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 4) |
| >>> x |
| |
| 1.2045 2.4084 0.4001 1.1372 |
| 0.5596 1.5677 0.6219 -0.7954 |
| 1.3635 -1.2313 -0.5414 -1.8478 |
| [torch.FloatTensor of size 3x4] |
| |
| >>> mask = x.ge(0.5) |
| >>> mask |
| |
| 1 1 0 1 |
| 1 1 1 0 |
| 1 0 0 0 |
| [torch.ByteTensor of size 3x4] |
| |
| >>> torch.masked_select(x, mask) |
| |
| 1.2045 |
| 2.4084 |
| 1.1372 |
| 0.5596 |
| 1.5677 |
| 0.6219 |
| 1.3635 |
| [torch.FloatTensor of size 7] |
| |
| """) |
| |
| add_docstr(torch._C.max, |
| """ |
| .. function:: max(input) -> float |
| |
| Returns the maximum value of all elements in the :attr:`input` Tensor. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| 0.4729 -0.2266 -0.2085 |
| [torch.FloatTensor of size 1x3] |
| |
| >>> torch.max(a) |
| 0.4729 |
| |
| |
| .. function:: max(input, dim, max=None, max_indices=None) -> (Tensor, LongTensor) |
| |
| Returns the maximum value of each row of the :attr:`input` Tensor in the given dimension :attr:`dim`. |
| Also returns the index location of each maximum value found. |
| |
| The output Tensors are of the same size as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim (int): the dimension to reduce |
| max (Tensor, optional): the result Tensor with maximum values in dimension :attr:`dim` |
| max_indices (LongTensor, optional): the result Tensor with the index locations of the maximum values in dimension :attr:`dim` |
| |
| Example:: |
| |
| >> a = torch.randn(4, 4) |
| >> a |
| |
| 0.0692 0.3142 1.2513 -0.5428 |
| 0.9288 0.8552 -0.2073 0.6409 |
| 1.0695 -0.0101 -2.4507 -1.2230 |
| 0.7426 -0.7666 0.4862 -0.6628 |
| torch.FloatTensor of size 4x4] |
| |
| >>> torch.max(a, 1) |
| ( |
| 1.2513 |
| 0.9288 |
| 1.0695 |
| 0.7426 |
| [torch.FloatTensor of size 4x1] |
| , |
| 2 |
| 0 |
| 0 |
| 0 |
| [torch.LongTensor of size 4x1] |
| ) |
| |
| """) |
| |
| add_docstr(torch._C.mean, |
| """ |
| .. function:: mean(input) -> float |
| |
| Returns the mean value of all elements in the :attr:`input` Tensor. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| -0.2946 -0.9143 2.1809 |
| [torch.FloatTensor of size 1x3] |
| |
| >>> torch.mean(a) |
| 0.32398951053619385 |
| |
| |
| .. function:: mean(input, dim, out=None) -> Tensor |
| |
| Returns the mean value of each row of the :attr:`input` Tensor in the given dimension :attr:`dim`. |
| |
| The output Tensor is of the same size as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim (int): the dimension to reduce |
| out (Tensor, optional): the result Tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| |
| -1.2738 -0.3058 0.1230 -1.9615 |
| 0.8771 -0.5430 -0.9233 0.9879 |
| 1.4107 0.0317 -0.6823 0.2255 |
| -1.3854 0.4953 -0.2160 0.2435 |
| [torch.FloatTensor of size 4x4] |
| |
| >>> torch.mean(a, 1) |
| |
| -0.8545 |
| 0.0997 |
| 0.2464 |
| -0.2157 |
| [torch.FloatTensor of size 4x1] |
| |
| """) |
| |
| add_docstr(torch._C.median, |
| """ |
| median(input, dim=-1, values=None, indices=None) -> (Tensor, LongTensor) |
| |
| Returns the median value of each row of the :attr:`input` Tensor in the given dimension :attr:`dim`. |
| Also returns the index location of the median value as a `LongTensor`. |
| |
| By default, :attr:`dim` is the last dimension of the :attr:`input` Tensor. |
| |
| The output Tensors are of the same size as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| |
| .. note:: This function is not defined for ``torch.cuda.Tensor`` yet. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim (int): the dimension to reduce |
| values (Tensor, optional): the result Tensor |
| indices (Tensor, optional): the result index Tensor |
| |
| Example:: |
| |
| >>> a |
| |
| -0.6891 -0.6662 |
| 0.2697 0.7412 |
| 0.5254 -0.7402 |
| 0.5528 -0.2399 |
| [torch.FloatTensor of size 4x2] |
| |
| >>> a = torch.randn(4, 5) |
| >>> a |
| |
| 0.4056 -0.3372 1.0973 -2.4884 0.4334 |
| 2.1336 0.3841 0.1404 -0.1821 -0.7646 |
| -0.2403 1.3975 -2.0068 0.1298 0.0212 |
| -1.5371 -0.7257 -0.4871 -0.2359 -1.1724 |
| [torch.FloatTensor of size 4x5] |
| |
| >>> torch.median(a, 1) |
| ( |
| 0.4056 |
| 0.1404 |
| 0.0212 |
| -0.7257 |
| [torch.FloatTensor of size 4x1] |
| , |
| 0 |
| 2 |
| 4 |
| 1 |
| [torch.LongTensor of size 4x1] |
| ) |
| |
| """) |
| |
| add_docstr(torch._C.min, |
| """ |
| .. function:: min(input) -> float |
| |
| Returns the minimum value of all elements in the :attr:`input` Tensor. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| 0.4729 -0.2266 -0.2085 |
| [torch.FloatTensor of size 1x3] |
| |
| >>> torch.min(a) |
| -0.22663167119026184 |
| |
| |
| .. function:: min(input, dim, min=None, min_indices=None) -> (Tensor, LongTensor) |
| |
| Returns the minimum value of each row of the :attr:`input` Tensor in the given dimension :attr:`dim`. |
| Also returns the index location of each minimum value found. |
| |
| The output Tensors are of the same size as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim (int): the dimension to reduce |
| min (Tensor, optional): the result Tensor with minimum values in dimension :attr:`dim` |
| min_indices (LongTensor, optional): the result Tensor with the index locations of the minimum values in dimension :attr:`dim` |
| |
| Example:: |
| |
| >> a = torch.randn(4, 4) |
| >> a |
| |
| 0.0692 0.3142 1.2513 -0.5428 |
| 0.9288 0.8552 -0.2073 0.6409 |
| 1.0695 -0.0101 -2.4507 -1.2230 |
| 0.7426 -0.7666 0.4862 -0.6628 |
| torch.FloatTensor of size 4x4] |
| |
| >> torch.min(a, 1) |
| |
| 0.5428 |
| 0.2073 |
| 2.4507 |
| 0.7666 |
| torch.FloatTensor of size 4x1] |
| |
| 3 |
| 2 |
| 2 |
| 1 |
| torch.LongTensor of size 4x1] |
| |
| """) |
| |
| add_docstr(torch._C.mm, |
| """ |
| mm(mat1, mat2, out=None) -> Tensor |
| |
| Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. |
| |
| If :attr:`mat1` is a `n x m` Tensor, :attr:`mat2` is a `m x p` Tensor, :attr:`out` will be a `n x p` Tensor. |
| |
| Args: |
| mat1 (Tensor): First matrix to be multiplied |
| mat2 (Tensor): Second matrix to be multiplied |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> mat1 = torch.randn(2, 3) |
| >>> mat2 = torch.randn(3, 3) |
| >>> torch.mm(mat1, mat2) |
| 0.0519 -0.3304 1.2232 |
| 4.3910 -5.1498 2.7571 |
| [torch.FloatTensor of size 2x3] |
| """) |
| |
| add_docstr(torch._C.mode, |
| """ |
| mode(input, dim=-1, values=None, indices=None) -> (Tensor, LongTensor) |
| |
| Returns the mode value of each row of the :attr:`input` Tensor in the given dimension :attr:`dim`. |
| Also returns the index location of the mode value as a `LongTensor`. |
| |
| By default, :attr:`dim` is the last dimension of the :attr:`input` Tensor. |
| |
| The output Tensors are of the same size as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| |
| .. note:: This function is not defined for ``torch.cuda.Tensor`` yet. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim (int): the dimension to reduce |
| values (Tensor, optional): the result Tensor |
| indices (Tensor, optional): the result index Tensor |
| |
| Example:: |
| |
| >>> a |
| |
| -0.6891 -0.6662 |
| 0.2697 0.7412 |
| 0.5254 -0.7402 |
| 0.5528 -0.2399 |
| [torch.FloatTensor of size 4x2] |
| |
| >>> a = torch.randn(4, 5) |
| >>> a |
| |
| 0.4056 -0.3372 1.0973 -2.4884 0.4334 |
| 2.1336 0.3841 0.1404 -0.1821 -0.7646 |
| -0.2403 1.3975 -2.0068 0.1298 0.0212 |
| -1.5371 -0.7257 -0.4871 -0.2359 -1.1724 |
| [torch.FloatTensor of size 4x5] |
| |
| >>> torch.mode(a, 1) |
| ( |
| -2.4884 |
| -0.7646 |
| -2.0068 |
| -1.5371 |
| [torch.FloatTensor of size 4x1] |
| , |
| 3 |
| 4 |
| 2 |
| 0 |
| [torch.LongTensor of size 4x1] |
| ) |
| |
| """) |
| |
| add_docstr(torch._C.mul, |
| """ |
| .. function:: mul(input, value, out=None) |
| |
| Multiplies each element of the input :attr:`input` with the scalar :attr:`value` and returns a new resulting tensor. |
| |
| :math:`out = tensor * value` |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| value (float): the number to be multiplied to each element of :attr:`input` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(3) |
| >>> a |
| |
| -0.9374 |
| -0.5254 |
| -0.6069 |
| [torch.FloatTensor of size 3] |
| |
| >>> torch.mul(a, 100) |
| |
| -93.7411 |
| -52.5374 |
| -60.6908 |
| [torch.FloatTensor of size 3] |
| |
| |
| .. function:: mul(input, other, out=None) |
| |
| Each element of the Tensor :attr:`input` is multiplied by each element of the Tensor :attr:`other`. The resulting Tensor is returned. |
| The shapes of :attr:`input` and :attr:`other` don't need to match. The total number of elements in each Tensor need to be the same. |
| |
| .. note:: When the shapes do not match, the shape of :attr:`input` is used as the shape for the returned output Tensor |
| |
| :math:`out_i = input_i * other_i` |
| |
| Args: |
| input (Tensor): the first multiplicand `Tensor` |
| other (Tensor): the second multiplicand `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4,4) |
| >>> a |
| |
| -0.7280 0.0598 -1.4327 -0.5825 |
| -0.1427 -0.0690 0.0821 -0.3270 |
| -0.9241 0.5110 0.4070 -1.1188 |
| -0.8308 0.7426 -0.6240 -1.1582 |
| [torch.FloatTensor of size 4x4] |
| |
| >>> b = torch.randn(2, 8) |
| >>> b |
| |
| 0.0430 -1.0775 0.6015 1.1647 -0.6549 0.0308 -0.1670 1.0742 |
| -1.2593 0.0292 -0.0849 0.4530 1.2404 -0.4659 -0.1840 0.5974 |
| [torch.FloatTensor of size 2x8] |
| |
| >>> torch.mul(a, b) |
| |
| -0.0313 -0.0645 -0.8618 -0.6784 |
| 0.0934 -0.0021 -0.0137 -0.3513 |
| 1.1638 0.0149 -0.0346 -0.5068 |
| -1.0304 -0.3460 0.1148 -0.6919 |
| [torch.FloatTensor of size 4x4] |
| |
| """) |
| |
| add_docstr(torch._C.multinomial, |
| """ |
| """) |
| |
| add_docstr(torch._C.mv, |
| """ |
| addmv(mat, vec, out=None) -> Tensor |
| |
| Performs a matrix-vector product of the matrix :attr:`mat` and the vector :attr:`vec`. |
| |
| If :attr:`mat` is a `n x m` Tensor, :attr:`vec` is a 1D Tensor of size `m`, :attr:`out` will be 1D of size `n`. |
| |
| Args: |
| mat (Tensor): matrix to be multiplied |
| vec (Tensor): vector to be multiplied |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> M = torch.randn(2) |
| >>> mat = torch.randn(2, 3) |
| >>> vec = torch.randn(3) |
| >>> torch.mv(mat, vec) |
| -2.0939 |
| -2.2950 |
| [torch.FloatTensor of size 2] |
| """) |
| |
| add_docstr(torch._C.ne, |
| """ |
| ne(input, other, out=None) -> Tensor |
| |
| Computes `tensor != other` element-wise. |
| |
| The second argument can be a number or a tensor of the same shape and |
| type as the first argument. |
| |
| Args: |
| input (Tensor): Tensor to compare |
| other (Tensor or float): Tensor or value to compare |
| out (Tensor, optional): Output tensor. Must be a `ByteTensor` or the same type as `tensor`. |
| |
| Returns: |
| Tensor: a ``torch.ByteTensor`` containing a 1 at each location where comparison is true. |
| |
| Example:: |
| |
| >>> torch.ne(torch.Tensor([[1, 2], [3, 4]]), torch.Tensor([[1, 1], [4, 4]])) |
| 0 1 |
| 1 0 |
| [torch.ByteTensor of size 2x2] |
| """) |
| |
| add_docstr(torch._C.neg, |
| """ |
| neg(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the negative of the elements of :attr:`input`. |
| |
| :math:`out = -1 * input` |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| |
| -0.4430 |
| 1.1690 |
| -0.8836 |
| -0.4565 |
| 0.2968 |
| [torch.FloatTensor of size 5] |
| |
| >>> torch.neg(a) |
| |
| 0.4430 |
| -1.1690 |
| 0.8836 |
| 0.4565 |
| -0.2968 |
| [torch.FloatTensor of size 5] |
| |
| """) |
| |
| add_docstr(torch._C.nonzero, |
| """ |
| nonzero(input, out=None) -> LongTensor |
| |
| Returns a tensor containing the indices of all non-zero elements of :attr:`input`. |
| Each row in the result contains the indices of a non-zero element in :attr:`input`. |
| |
| If :attr:`input` has `n` dimensions, then the resulting indices Tensor :attr:`out` is of size `z x n`, where `z` is the total number of non-zero elements in the :attr:`input` Tensor. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (LongTensor, optional): The result `Tensor` containing indices |
| |
| Example:: |
| |
| >>> torch.nonzero(torch.Tensor([1, 1, 1, 0, 1])) |
| |
| 0 |
| 1 |
| 2 |
| 4 |
| [torch.LongTensor of size 4x1] |
| |
| >>> torch.nonzero(torch.Tensor([[0.6, 0.0, 0.0, 0.0], |
| ... [0.0, 0.4, 0.0, 0.0], |
| ... [0.0, 0.0, 1.2, 0.0], |
| ... [0.0, 0.0, 0.0,-0.4]])) |
| |
| 0 0 |
| 1 1 |
| 2 2 |
| 3 3 |
| [torch.LongTensor of size 4x2] |
| |
| """) |
| |
| add_docstr(torch._C.norm, |
| """ |
| .. function:: norm(input, p=2) -> float |
| |
| Returns the p-norm of the :attr:`input` Tensor. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| p (float, optional): the exponent value in the norm formulation |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| -0.4376 -0.5328 0.9547 |
| [torch.FloatTensor of size 1x3] |
| |
| >>> torch.norm(a, 3) |
| 1.0338925067372466 |
| |
| |
| .. function:: norm(input, p, dim, out=None) -> Tensor |
| |
| Returns the p-norm of each row of the :attr:`input` Tensor in the given dimension :attr:`dim`. |
| |
| The output Tensor is of the same size as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| p (float): the exponent value in the norm formulation |
| dim (int): the dimension to reduce |
| out (Tensor, optional): the result Tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 2) |
| >>> a |
| |
| -0.6891 -0.6662 |
| 0.2697 0.7412 |
| 0.5254 -0.7402 |
| 0.5528 -0.2399 |
| [torch.FloatTensor of size 4x2] |
| |
| >>> torch.norm(a, 2, 1) |
| |
| 0.9585 |
| 0.7888 |
| 0.9077 |
| 0.6026 |
| [torch.FloatTensor of size 4x1] |
| |
| >>> torch.norm(a, 0, 1) |
| |
| 2 |
| 2 |
| 2 |
| 2 |
| [torch.FloatTensor of size 4x1] |
| |
| """) |
| |
| add_docstr(torch._C.normal, |
| """ |
| """) |
| |
| add_docstr(torch._C.numel, |
| """ |
| numel(input) -> long |
| |
| Returns the total number of elements in the :attr:`input` Tensor. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(1,2,3,4,5) |
| >>> torch.numel(a) |
| 120 |
| >>> a = torch.zeros(4,4) |
| >>> torch.numel(a) |
| 16 |
| |
| """) |
| |
| add_docstr(torch._C.ones, |
| """ |
| """) |
| |
| add_docstr(torch._C.orgqr, |
| """ |
| """) |
| |
| add_docstr(torch._C.ormqr, |
| """ |
| """) |
| |
| add_docstr(torch._C.potrf, |
| """ |
| """) |
| |
| add_docstr(torch._C.potri, |
| """ |
| """) |
| |
| add_docstr(torch._C.potrs, |
| """ |
| """) |
| |
| add_docstr(torch._C.pow, |
| """ |
| .. function:: pow(input, exponent, out=None) |
| |
| Takes the power of each element in :attr:`input` with :attr:`exponent` and returns a Tensor with the result. |
| |
| :attr:`exponent` can be either a single ``float`` number or a ``Tensor`` |
| with the same number of elements as :attr:`input`. |
| |
| When :attr:`exponent` is a scalar value, the operation applied is: |
| |
| :math:`out_i = x_i ^ {exponent}` |
| |
| When :attr:`exponent` is a Tensor, the operation applied is: |
| |
| :math:`out_i = x_i ^ {exponent_i}` |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| exponent (float or Tensor): the exponent value |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.5274 |
| -0.8232 |
| -2.1128 |
| 1.7558 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.pow(a, 2) |
| |
| 0.2781 |
| 0.6776 |
| 4.4640 |
| 3.0829 |
| [torch.FloatTensor of size 4] |
| |
| >>> exp = torch.range(1, 4) |
| >>> a = torch.range(1, 4) |
| >>> a |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| [torch.FloatTensor of size 4] |
| |
| >>> exp |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.pow(a, exp) |
| |
| 1 |
| 4 |
| 27 |
| 256 |
| [torch.FloatTensor of size 4] |
| |
| |
| .. function:: pow(base, input, out=None) |
| |
| :attr:`base` is a scalar ``float`` value, and :attr:`input` is a Tensor. The returned Tensor :attr:`out` is of the same shape as :attr:`input` |
| |
| The operation applied is: |
| |
| :math:`out_i = base ^ {input_i}` |
| |
| Args: |
| base (float): the scalar base value for the power operation |
| input (Tensor): the exponent `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> exp = torch.range(1, 4) |
| >>> base = 2 |
| >>> torch.pow(base, exp) |
| |
| 2 |
| 4 |
| 8 |
| 16 |
| [torch.FloatTensor of size 4] |
| |
| """) |
| |
| add_docstr(torch._C.prod, |
| """ |
| .. function:: prod(input) -> float |
| |
| Returns the product of all elements in the :attr:`input` Tensor. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| 0.6170 0.3546 0.0253 |
| [torch.FloatTensor of size 1x3] |
| |
| >>> torch.prod(a) |
| 0.005537458061418483 |
| |
| |
| .. function:: prod(input, dim, out=None) -> Tensor |
| |
| Returns the product of each row of the :attr:`input` Tensor in the given dimension :attr:`dim`. |
| |
| The output Tensor is of the same size as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim (int): the dimension to reduce |
| out (Tensor, optional): the result Tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 2) |
| >>> a |
| |
| 0.1598 -0.6884 |
| -0.1831 -0.4412 |
| -0.9925 -0.6244 |
| -0.2416 -0.8080 |
| [torch.FloatTensor of size 4x2] |
| |
| >>> torch.prod(a, 1) |
| |
| -0.1100 |
| 0.0808 |
| 0.6197 |
| 0.1952 |
| [torch.FloatTensor of size 4x1] |
| |
| """) |
| |
| add_docstr(torch._C.pstrf, |
| """ |
| """) |
| |
| add_docstr(torch._C.qr, |
| """ |
| """) |
| |
| add_docstr(torch._C.rand, |
| """ |
| """) |
| |
| add_docstr(torch._C.randn, |
| """ |
| """) |
| |
| add_docstr(torch._C.randperm, |
| """ |
| randperm(n, out=None) -> LongTensor |
| |
| Returns a random permutation of integers from ``0`` to ``n - 1``. |
| |
| Args: |
| n (int): the upper bound (exclusive) |
| |
| Example:: |
| |
| >>> torch.randperm(4) |
| |
| 2 |
| 1 |
| 3 |
| 0 |
| [torch.LongTensor of size 4] |
| """) |
| |
| add_docstr(torch._C.range, |
| """ |
| range(start, end, step=1, out=None) -> Tensor |
| |
| returns a 1D Tensor of size :math:`floor((end - start) / step) + 1` with values |
| from :attr:`start` to :attr:`end` with step :attr:`step`. Step is the gap between two values in the tensor. |
| :math:`x_{i+1} = x_i + step` |
| |
| Args: |
| start (float): The starting value for the set of points |
| end (float): The ending value for the set of points |
| step (float): The gap between each pair of adjacent points |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> torch.range(1, 4) |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.range(1, 4, 0.5) |
| |
| 1.0000 |
| 1.5000 |
| 2.0000 |
| 2.5000 |
| 3.0000 |
| 3.5000 |
| 4.0000 |
| [torch.FloatTensor of size 7] |
| |
| """) |
| |
| add_docstr(torch._C.remainder, |
| """ |
| remainder(input, divisor, out=None) -> Tensor |
| |
| Computes the element-wise remainder of division. |
| |
| The divisor and dividend may contain both for integer and floating point |
| numbers. The remainder has the same sign as the divisor. |
| |
| Args: |
| input (Tensor): The dividend |
| divisor (Tensor or float): The divisor. This may be either a number or a |
| tensor of the same shape as the dividend. |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> torch.remainder(torch.Tensor([-3, -2, -1, 1, 2, 3]), 2) |
| torch.FloatTensor([1, 0, 1, 1, 0, 1]) |
| >>> torch.remainder(torch.Tensor([1, 2, 3, 4, 5]), 1.5) |
| torch.FloatTensor([1.0, 0.5, 0.0, 1.0, 0.5]) |
| |
| .. seealso:: |
| |
| :func:`torch.fmod`, which computes the element-wise remainder of |
| division equivalently to the C library function ``fmod()`` |
| """) |
| |
| add_docstr(torch._C.renorm, |
| """ |
| renorm(input, p, dim, maxnorm, out=None) -> Tensor |
| |
| Returns a Tensor where each sub-tensor of :attr:`input` along dimension :attr:`dim` |
| is normalized such that the `p`-norm of the sub-tensor is lower than the value :attr:`maxnorm` |
| |
| .. note:: If the norm of a row is lower than `maxnorm`, the row is unchanged |
| |
| Args: |
| input (Tensor): The input Tensor |
| p (float): The power for the norm computation |
| dim (int): The dimension to slice over to get the sub-tensors |
| maxnorm (float): The maximum norm to keep each sub-tensor under |
| out (Tensor, optional): Output tensor |
| |
| Example:: |
| |
| >>> x = torch.ones(3, 3) |
| >>> x[1].fill_(2) |
| >>> x[2].fill_(3) |
| >>> x |
| |
| 1 1 1 |
| 2 2 2 |
| 3 3 3 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> torch.renorm(x, 1, 0, 5) |
| |
| 1.0000 1.0000 1.0000 |
| 1.6667 1.6667 1.6667 |
| 1.6667 1.6667 1.6667 |
| [torch.FloatTensor of size 3x3] |
| |
| """) |
| |
| add_docstr(torch._C.round, |
| """ |
| round(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with each of the elements of :attr:`input` rounded to the closest integer. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.2290 |
| 1.3409 |
| -0.5662 |
| -0.0899 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.round(a) |
| |
| 1 |
| 1 |
| -1 |
| -0 |
| [torch.FloatTensor of size 4] |
| |
| """) |
| |
| add_docstr(torch._C.rsqrt, |
| """ |
| rsqrt(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the reciprocal of the square-root of each of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.2290 |
| 1.3409 |
| -0.5662 |
| -0.0899 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.rsqrt(a) |
| |
| 0.9020 |
| 0.8636 |
| nan |
| nan |
| [torch.FloatTensor of size 4] |
| |
| """) |
| |
| add_docstr(torch._C.scatter, |
| """ |
| """) |
| |
| add_docstr(torch._C.set_num_threads, |
| """ |
| set_num_threads(int) |
| |
| Sets the number of OpenMP threads used for parallelizing CPU operations |
| """) |
| |
| add_docstr(torch._C.sigmoid, |
| """ |
| sigmoid(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the sigmoid of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.4972 |
| 1.3512 |
| 0.1056 |
| -0.2650 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.sigmoid(a) |
| |
| 0.3782 |
| 0.7943 |
| 0.5264 |
| 0.4341 |
| [torch.FloatTensor of size 4] |
| |
| """) |
| |
| add_docstr(torch._C.sign, |
| """ |
| sign(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the sign of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.sign(a) |
| |
| -1 |
| 1 |
| 1 |
| 1 |
| [torch.FloatTensor of size 4] |
| |
| """) |
| |
| add_docstr(torch._C.sin, |
| """ |
| sin(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the sine of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.sin(a) |
| -0.5944 |
| 0.2684 |
| 0.4322 |
| 0.9667 |
| [torch.FloatTensor of size 4] |
| """) |
| |
| add_docstr(torch._C.sinh, |
| """ |
| sinh(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the hyperbolic sine of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.sinh(a) |
| -0.6804 |
| 0.2751 |
| 0.4619 |
| 1.7225 |
| [torch.FloatTensor of size 4] |
| """) |
| |
| add_docstr(torch._C.sort, |
| """ |
| sort(input, dim=None, descending=False, out=None) -> (Tensor, LongTensor) |
| |
| Sorts the elements of the :attr:`input` Tensor along a given dimension in ascending order by value. |
| |
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. |
| |
| If :attr:`descending` is `True` then the elements are sorted in descending order by value. |
| |
| A tuple of (sorted_tensor, sorted_indices) is returned, where the sorted_indices are the indices of the elements in the original `input` Tensor. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim (int, optional): The dimension to sort along |
| descending (bool, optional): Controls the sorting order (ascending or descending) |
| out (tuple, optional): The output tuple of (Tensor, LongTensor) |
| can be optionally given to be used as output buffers |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 4) |
| >>> sorted, indices = torch.sort(x) |
| >>> sorted |
| |
| -1.6747 0.0610 0.1190 1.4137 |
| -1.4782 0.7159 1.0341 1.3678 |
| -0.3324 -0.0782 0.3518 0.4763 |
| [torch.FloatTensor of size 3x4] |
| |
| >>> indices |
| |
| 0 1 3 2 |
| 2 1 0 3 |
| 3 1 0 2 |
| [torch.LongTensor of size 3x4] |
| |
| >>> sorted, indices = torch.sort(x, 0) |
| >>> sorted |
| |
| -1.6747 -0.0782 -1.4782 -0.3324 |
| 0.3518 0.0610 0.4763 0.1190 |
| 1.0341 0.7159 1.4137 1.3678 |
| [torch.FloatTensor of size 3x4] |
| |
| >>> indices |
| |
| 0 2 1 2 |
| 2 0 2 0 |
| 1 1 0 1 |
| [torch.LongTensor of size 3x4] |
| |
| """) |
| |
| add_docstr(torch._C.sqrt, |
| """ |
| sqrt(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the square-root of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| 1.2290 |
| 1.3409 |
| -0.5662 |
| -0.0899 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.sqrt(a) |
| |
| 1.1086 |
| 1.1580 |
| nan |
| nan |
| [torch.FloatTensor of size 4] |
| |
| """) |
| |
| add_docstr(torch._C.squeeze, |
| """ |
| squeeze(input, dim=None, out=None) |
| |
| Returns a `Tensor` with all the dimensions of :attr:`input` of size `1` removed. |
| |
| If `input` is of shape: :math:`(A x 1 x B x C x 1 x D)` then the `out` Tensor |
| will be of shape: :math:`(A x B x C x D)` |
| |
| When :attr:`dim` is given, a squeeze operation is done only in the given dimension. |
| If `input` is of shape: :math:`(A x 1 x B)`, `squeeze(input, 0)` leaves the Tensor unchanged, |
| but `squeeze(input, 1)` will squeeze the tensor to the shape :math:`(A x B)`. |
| |
| .. note:: The returned Tensor shares the storage with the input Tensor, |
| so changing the contents of one will change the contents of the other. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim (int, optional): if given, the input will be squeezed only in this dimension |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> x = torch.zeros(2,1,2,1,2) |
| >>> x.size() |
| (2L, 1L, 2L, 1L, 2L) |
| >>> y = torch.squeeze(x) |
| >>> y.size() |
| (2L, 2L, 2L) |
| >>> y = torch.squeeze(x, 0) |
| >>> y.size() |
| (2L, 1L, 2L, 1L, 2L) |
| >>> y = torch.squeeze(x, 1) |
| >>> y.size() |
| (2L, 2L, 1L, 2L) |
| |
| """) |
| |
| add_docstr(torch._C.std, |
| """ |
| .. function:: std(input) -> float |
| |
| Returns the standard-deviation of all elements in the :attr:`input` Tensor. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| -1.3063 1.4182 -0.3061 |
| [torch.FloatTensor of size 1x3] |
| |
| >>> torch.std(a) |
| 1.3782334731508061 |
| |
| |
| .. function:: std(input, dim, out=None) -> Tensor |
| |
| Returns the standard-deviation of each row of the :attr:`input` Tensor in the given dimension :attr:`dim`. |
| |
| The output Tensor is of the same size as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim (int): the dimension to reduce |
| out (Tensor, optional): the result Tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| |
| 0.1889 -2.4856 0.0043 1.8169 |
| -0.7701 -0.4682 -2.2410 0.4098 |
| 0.1919 -1.1856 -1.0361 0.9085 |
| 0.0173 1.0662 0.2143 -0.5576 |
| [torch.FloatTensor of size 4x4] |
| |
| >>> torch.std(a, dim=1) |
| |
| 1.7756 |
| 1.1025 |
| 1.0045 |
| 0.6725 |
| [torch.FloatTensor of size 4x1] |
| |
| """) |
| |
| add_docstr(torch._C.sum, |
| """ |
| .. function:: sum(input) -> float |
| |
| Returns the sum of all elements in the :attr:`input` Tensor. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| 0.6170 0.3546 0.0253 |
| [torch.FloatTensor of size 1x3] |
| |
| >>> torch.sum(a) |
| 0.9969287421554327 |
| |
| |
| .. function:: sum(input, dim, out=None) -> Tensor |
| |
| Returns the sum of each row of the :attr:`input` Tensor in the given dimension :attr:`dim`. |
| |
| The output Tensor is of the same size as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim (int): the dimension to reduce |
| out (Tensor, optional): the result Tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| |
| -0.4640 0.0609 0.1122 0.4784 |
| -1.3063 1.6443 0.4714 -0.7396 |
| -1.3561 -0.1959 1.0609 -1.9855 |
| 2.6833 0.5746 -0.5709 -0.4430 |
| [torch.FloatTensor of size 4x4] |
| |
| >>> torch.sum(a, 1) |
| |
| 0.1874 |
| 0.0698 |
| -2.4767 |
| 2.2440 |
| [torch.FloatTensor of size 4x1] |
| |
| """) |
| |
| add_docstr(torch._C.svd, |
| """ |
| """) |
| |
| add_docstr(torch._C.symeig, |
| """ |
| """) |
| |
| add_docstr(torch._C.t, |
| """ |
| t(input, out=None) -> Tensor |
| |
| Expects :attr:`input` to be a matrix (2D Tensor) and transposes dimensions 0 and 1. |
| |
| Can be seen as a short-hand function for `transpose(input, 0, 1)` |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> x = torch.randn(2, 3) |
| >>> x |
| |
| 0.4834 0.6907 1.3417 |
| -0.1300 0.5295 0.2321 |
| [torch.FloatTensor of size 2x3] |
| |
| >>> torch.t(x) |
| |
| 0.4834 -0.1300 |
| 0.6907 0.5295 |
| 1.3417 0.2321 |
| [torch.FloatTensor of size 3x2] |
| |
| """) |
| |
| add_docstr(torch._C.tan, |
| """ |
| tan(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the tangent of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.tan(a) |
| -0.7392 |
| 0.2786 |
| 0.4792 |
| 3.7801 |
| [torch.FloatTensor of size 4] |
| """) |
| |
| add_docstr(torch._C.tanh, |
| """ |
| tanh(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the hyperbolic tangent of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| -0.6366 |
| 0.2718 |
| 0.4469 |
| 1.3122 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.tanh(a) |
| -0.5625 |
| 0.2653 |
| 0.4193 |
| 0.8648 |
| [torch.FloatTensor of size 4] |
| """) |
| |
| add_docstr(torch._C.topk, |
| """ |
| topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor) |
| |
| Returns the :attr:`k` largest elements of the given :attr:`input` Tensor along a given dimension. |
| |
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. |
| |
| If :attr:`largest` is `False` then the `k` smallest elements are returned. |
| |
| A tuple of `(values, indices)` is returned, where the `indices` are the indices of |
| the elements in the original `input` Tensor. |
| |
| The boolean option :attr:`sorted` if `True`, will make sure that the returned `k` |
| elements are themselves sorted |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| k (int): the k in "top-k" |
| dim (int, optional): The dimension to sort along |
| largest (bool, optional): Controls whether to return largest or smallest elements |
| sorted (bool, optional): Controls whether to return the elements in sorted order |
| out (tuple, optional): The output tuple of (Tensor, LongTensor) |
| can be optionally given to be used as output buffers |
| |
| Example:: |
| |
| >>> x = torch.range(1, 5) |
| >>> x |
| |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| [torch.FloatTensor of size 5] |
| |
| >>> torch.topk(x, 3) |
| ( |
| 2 |
| 1 |
| 3 |
| [torch.FloatTensor of size 3] |
| , |
| 1 |
| 0 |
| 2 |
| [torch.LongTensor of size 3] |
| ) |
| >>> torch.topk(x, 3, 0, largest=False) |
| ( |
| 1 |
| 2 |
| 3 |
| [torch.FloatTensor of size 3] |
| , |
| 0 |
| 1 |
| 2 |
| [torch.LongTensor of size 3] |
| ) |
| |
| """) |
| |
| add_docstr(torch._C.trace, |
| """ |
| trace(input) -> float |
| |
| Returns the sum of the elements of the diagonal of the input 2D matrix. |
| |
| Example:: |
| |
| >>> x = torch.range(1, 9).view(3, 3) |
| >>> x |
| |
| 1 2 3 |
| 4 5 6 |
| 7 8 9 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> torch.trace(x) |
| 15.0 |
| |
| """) |
| |
| add_docstr(torch._C.transpose, |
| """ |
| transpose(input, dim0, dim1, out=None) -> Tensor |
| |
| Returns a `Tensor` that is a transposed version of :attr:`input`. The given dimensions :attr:`dim0` and :attr:`dim1` are swapped. |
| |
| The resulting :attr:`out` Tensor shares it's underlying storage with the :attr:`input` Tensor, so changing the content of one would change the content of the other. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim0 (int): The first dimension to be transposed |
| dim1 (int): The second dimension to be transposed |
| |
| Example:: |
| |
| >>> x = torch.randn(2, 3) |
| >>> x |
| |
| 0.5983 -0.0341 2.4918 |
| 1.5981 -0.5265 -0.8735 |
| [torch.FloatTensor of size 2x3] |
| |
| >>> torch.transpose(x, 0, 1) |
| |
| 0.5983 1.5981 |
| -0.0341 -0.5265 |
| 2.4918 -0.8735 |
| [torch.FloatTensor of size 3x2] |
| |
| """) |
| |
| add_docstr(torch._C.tril, |
| """ |
| tril(input, k=0, out=None) -> Tensor |
| |
| Returns the lower triangular part of the matrix (2D Tensor) :attr:`input`, |
| the other elements of the result Tensor :attr:`out` are set to 0. |
| |
| The lower triangular part of the matrix is defined as the elements on and below the diagonal. |
| |
| The argument :attr:`k` controls which diagonal to consider. |
| |
| - :attr:`k` = 0, is the main diagonal. |
| - :attr:`k` > 0, is above the main diagonal. |
| - :attr:`k` < 0, is below the main diagonal. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| k (long, optional): the diagonal to consider |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(3,3) |
| >>> a |
| |
| 1.3225 1.7304 1.4573 |
| -0.3052 -0.3111 -0.1809 |
| 1.2469 0.0064 -1.6250 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> torch.tril(a) |
| |
| 1.3225 0.0000 0.0000 |
| -0.3052 -0.3111 0.0000 |
| 1.2469 0.0064 -1.6250 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> torch.tril(a, k=1) |
| |
| 1.3225 1.7304 0.0000 |
| -0.3052 -0.3111 -0.1809 |
| 1.2469 0.0064 -1.6250 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> torch.tril(a, k=-1) |
| |
| 0.0000 0.0000 0.0000 |
| -0.3052 0.0000 0.0000 |
| 1.2469 0.0064 0.0000 |
| [torch.FloatTensor of size 3x3] |
| |
| """) |
| |
| add_docstr(torch._C.triu, |
| """ |
| triu(input, k=0, out=None) -> Tensor |
| |
| Returns the upper triangular part of the matrix (2D Tensor) :attr:`input`, |
| the other elements of the result Tensor :attr:`out` are set to 0. |
| |
| The upper triangular part of the matrix is defined as the elements on and above the diagonal. |
| |
| The argument :attr:`k` controls which diagonal to consider. |
| |
| - :attr:`k` = 0, is the main diagonal. |
| - :attr:`k` > 0, is above the main diagonal. |
| - :attr:`k` < 0, is below the main diagonal. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| k (long, optional): the diagonal to consider |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(3,3) |
| >>> a |
| |
| 1.3225 1.7304 1.4573 |
| -0.3052 -0.3111 -0.1809 |
| 1.2469 0.0064 -1.6250 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> torch.triu(a) |
| |
| 1.3225 1.7304 1.4573 |
| 0.0000 -0.3111 -0.1809 |
| 0.0000 0.0000 -1.6250 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> torch.triu(a, k=1) |
| |
| 0.0000 1.7304 1.4573 |
| 0.0000 0.0000 -0.1809 |
| 0.0000 0.0000 0.0000 |
| [torch.FloatTensor of size 3x3] |
| |
| >>> torch.triu(a, k=-1) |
| |
| 1.3225 1.7304 1.4573 |
| -0.3052 -0.3111 -0.1809 |
| 0.0000 0.0064 -1.6250 |
| [torch.FloatTensor of size 3x3] |
| |
| """) |
| |
| add_docstr(torch._C.trtrs, |
| """ |
| """) |
| |
| add_docstr(torch._C.trunc, |
| """ |
| trunc(input, out=None) -> Tensor |
| |
| Returns a new `Tensor` with the truncated integer values of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| out (Tensor, optional): The result `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| |
| -0.4972 |
| 1.3512 |
| 0.1056 |
| -0.2650 |
| [torch.FloatTensor of size 4] |
| |
| >>> torch.trunc(a) |
| |
| -0 |
| 1 |
| 0 |
| -0 |
| [torch.FloatTensor of size 4] |
| |
| """) |
| |
| add_docstr(torch._C.unfold, |
| """ |
| """) |
| |
| add_docstr(torch._C.var, |
| """ |
| .. function:: var(input) -> float |
| |
| Returns the variance of all elements in the :attr:`input` Tensor. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| |
| -1.3063 1.4182 -0.3061 |
| [torch.FloatTensor of size 1x3] |
| |
| >>> torch.var(a) |
| 1.899527506513334 |
| |
| |
| .. function:: var(input, dim, out=None) -> Tensor |
| |
| Returns the variance of each row of the :attr:`input` Tensor in the given dimension :attr:`dim`. |
| |
| The output Tensor is of the same size as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| |
| Args: |
| input (Tensor): the input `Tensor` |
| dim (int): the dimension to reduce |
| out (Tensor, optional): the result Tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| |
| -1.2738 -0.3058 0.1230 -1.9615 |
| 0.8771 -0.5430 -0.9233 0.9879 |
| 1.4107 0.0317 -0.6823 0.2255 |
| -1.3854 0.4953 -0.2160 0.2435 |
| [torch.FloatTensor of size 4x4] |
| |
| >>> torch.var(a, 1) |
| |
| 0.8859 |
| 0.9509 |
| 0.7548 |
| 0.6949 |
| [torch.FloatTensor of size 4x1] |
| |
| """) |
| |
| add_docstr(torch._C.zeros, |
| """ |
| """) |