| # Owner(s): ["module: dynamo"] |
| # flake8: noqa |
| import copy |
| import dataclasses |
| import unittest |
| from contextlib import contextmanager |
| from dataclasses import dataclass |
| |
| import torch |
| import torch._dynamo as torchdynamo |
| from functorch.experimental.control_flow import cond, map |
| from torch import Tensor |
| from torch.export import ( |
| Constraint, |
| Dim, |
| dynamic_dim, |
| export, |
| ) |
| from torch.export._trace import ( |
| _export_to_torch_ir, |
| DEFAULT_EXPORT_DYNAMO_CONFIG, |
| ) |
| from torch._export import capture_pre_autograd_graph |
| from torch._export.pass_base import _ExportPassBase |
| from torch._export.utils import ( |
| get_buffer, |
| get_param, |
| is_buffer, |
| is_param, |
| register_dataclass_as_pytree_node, |
| ) |
| from torch._subclasses import FakeTensorMode |
| from torch.export import Constraint, Dim |
| from torch.fx.experimental.proxy_tensor import make_fx |
| from torch.testing import FileCheck |
| from torch.testing._internal.common_utils import run_tests, TestCase |
| from torch.utils._pytree import ( |
| LeafSpec, |
| tree_flatten, |
| tree_map, |
| tree_unflatten, |
| TreeSpec, |
| treespec_dumps, |
| treespec_loads, |
| ) |
| import testing |
| # The following import pattern matters as `test_export.export` is patched |
| # in other files (like test_export_nonstrict.py). `torch.export.export` |
| # will invalidate the patch. |
| from torch.export import export |
| |
| |
| @unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo isn't support") |
| class TestDynamismExpression(TestCase): |
| @testing.expectedFailureNonStrict |
| def test_export_inline_constraints(self): |
| |
| def f(x): |
| b = x.item() |
| torch._constrain_as_size(b) |
| return torch.full((b, 1), 1) |
| |
| inp = (torch.tensor([3]),) |
| ref = f(*inp) |
| |
| gm = export(f, inp) |
| res = gm(*inp) |
| |
| self.assertTrue(torchdynamo.utils.same(ref, res)) |
| |
| gm = make_fx(f, tracing_mode="symbolic")(*inp) |
| res = gm(*inp) |
| self.assertTrue(torchdynamo.utils.same(ref, res)) |
| |
| def test_export_constraints_error(self): |
| def invalid_input_conflict_with_input_constraints(x): |
| return x + 1 |
| |
| inp = torch.zeros([3]) |
| dim_x = torch.export.Dim("dim_x", min=6) |
| with self.assertRaisesRegex(torch._dynamo.exc.UserError, "not in range"): |
| torch.export.export( |
| invalid_input_conflict_with_input_constraints, |
| (inp,), |
| dynamic_shapes={"x": {0: dim_x}}, |
| ) |
| |
| def conflicting_constraints(x): |
| b = x.item() |
| torch._constrain_as_size(b) |
| torch._constrain_as_value(b, min=4, max=5) |
| return torch.full((b, 1), 1) |
| |
| inp = (torch.tensor([3]),) |
| ep = torch.export.export(conflicting_constraints, inp) |
| |
| with self.assertRaisesRegex( |
| RuntimeError, r"is outside of inline constraint \[4, 5\]" |
| ): |
| ep(torch.tensor([3])) |
| |
| @testing.expectedFailureNonStrict |
| def test_export_assume_static_by_default(self): |
| def branch_on_shape(x: torch.Tensor): |
| if x.shape[0] == 4: |
| return x + 1 |
| else: |
| return x |
| |
| inp = (torch.rand(4, 5),) |
| |
| # Being able to export means shape is preserved as static |
| export(branch_on_shape, inp) |
| |
| |
| @unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo isn't support") |
| class TestExport(TestCase): |
| |
| def _test_export_same_as_eager(self, f, args, kwargs=None): |
| kwargs = kwargs or {} |
| exported_program = export(f, args, kwargs) |
| reversed_kwargs = {key: kwargs[key] for key in reversed(kwargs)} |
| self.assertEqual(exported_program(*args, **kwargs), f(*args, **kwargs)) |
| self.assertEqual(exported_program(*args, **reversed_kwargs), f(*args, **reversed_kwargs)) |
| |
| @testing.expectedFailureNonStrict |
| def test_basic(self): |
| def f(x, y): |
| return x[0] + y |
| |
| inp = ([torch.ones(1, 3)], torch.ones(1, 3)) |
| self._test_export_same_as_eager(f, inp) |
| |
| def test_external_call_non_strict_real_tensor(self): |
| class ExternalMethod: |
| def add(self, x): |
| return x + x |
| |
| class Basic(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.external_add = ExternalMethod().add |
| |
| def forward(self, x): |
| return self.external_add(x) |
| |
| f = Basic() |
| args = (torch.randn(1, 3), ) |
| ep = export(f, args, strict=False) |
| self.assertEqual(ep(*args), f(*args)) |
| |
| def test_basic_non_strict_real_tensor(self): |
| class Basic(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.param = torch.nn.Parameter(torch.randn(1, 3)) |
| |
| def forward(self, x, y): |
| return x[0] + y - self.param |
| |
| f = Basic() |
| args = ([torch.randn(1, 3)], torch.randn(1, 3)) |
| ep = export(f, args, strict=False) |
| self.assertEqual(ep(*args), f(*args)) |
| |
| def test_basic_non_strict_fake_tensor(self): |
| class Basic(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.param = torch.nn.Parameter(torch.randn(3, 2)) |
| |
| def forward(self, x, y): |
| return x[0] + y - self.param |
| |
| fake_mode = FakeTensorMode() |
| f = Basic() |
| with fake_mode: |
| args = ([torch.empty(3, 2)], torch.empty(3, 2)) |
| ep = export(f, args, strict=False) |
| inputs = ([torch.randn(3, 2)], torch.randn(3, 2)) |
| self.assertEqual(ep(*inputs), f(*inputs)) |
| |
| @testing.expectedFailureNonStrict |
| def test_raise_user_error_when_guard_on_data_dependent_operation(self): |
| def fn_ddo(x): |
| y = x.nonzero() |
| z = y.shape[0] |
| if z > 2: |
| return x.cos() |
| else: |
| return x.sin() |
| |
| with self.assertRaisesRegex( |
| torchdynamo.exc.UserError, |
| "trying to get a value out of symbolic int" |
| ): |
| _ = export(fn_ddo, (torch.tensor([2, 3, 5]),)) |
| |
| @testing.expectedFailureNonStrict |
| def test_if_functional(self): |
| def foo(x): |
| z = x + 4 |
| z.add_(4) |
| y = z.view(x.shape) |
| return x.cos() + y.cos() |
| |
| gm = export(foo, (torch.tensor([2, 3, 5]),)) |
| |
| view_count = 0 |
| for node in gm.graph.nodes: |
| if node.op == "call_function" and node.target == torch.ops.aten.add_.Tensor: |
| # No more inplace mutation |
| self.assertNotEqual( |
| node.target, |
| torch.ops.aten.add_.Tensor, |
| "There shouldn't be any inplace mutation node in the graph." |
| ) |
| if node.op == "call_function" and node.target == torch.ops.aten.view.default: |
| view_count += 1 |
| |
| # There should be nonzero view nodes in the graph |
| self.assertTrue(view_count > 0) |
| |
| def test_export_mod_constraints(self): |
| class BasicDynamiShapeModel(torch.nn.Module): |
| def forward(self, x: torch.Tensor) -> torch.Tensor: |
| return x.view(x.shape[0] - 1, -1) |
| |
| m = BasicDynamiShapeModel() |
| a = torch.randn(3, 4) |
| dim0_x = torch.export.Dim("dim0_x", min=3) |
| dim1_x = torch.export.Dim("dim1_x") |
| dynamic_shapes = {"x": (dim0_x, dim1_x)} |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.UserError, |
| ( |
| "Specializations unexpectedly required" |
| ".*\n.*\\[0\\] must be specialized to 3.*guards.*too complex" |
| ".*\n.*\\[1\\] must be specialized to 4.*guards.*too complex" |
| ), |
| ): |
| torch.export.export(m, (a,), dynamic_shapes=dynamic_shapes) |
| em = torch.export.export(m, (a,)) |
| x = torch.randn(3, 5) |
| with self.assertRaisesRegex(RuntimeError, "\\[1\\] is specialized at 4"): |
| em(x) |
| |
| def test_not_correct_dim(self): |
| def f(x): |
| return x.cos() |
| |
| def g(x): |
| return x + 4 |
| |
| inp_for_f = torch.tensor(5) |
| with self.assertRaisesRegex(torchdynamo.exc.UserError, "Cannot mark 0-dimension tensors to be dynamic"): |
| constraints = [dynamic_dim(inp_for_f, 0)] |
| |
| inp_for_f_mul_dim = torch.ones(5, 5) |
| with self.assertRaisesRegex( |
| torchdynamo.exc.UserError, |
| "Expected the dimension passed to dynamic_dim to be in the range \\[0:1\\]" |
| ): |
| constraints = [dynamic_dim(inp_for_f_mul_dim, 2)] |
| |
| inp_for_g = 4 |
| with self.assertRaisesRegex(torchdynamo.exc.UserError, "Expected tensor as input to dynamic_dim"): |
| constraints = [dynamic_dim(inp_for_g, 0)] |
| |
| @testing.expectedFailureNonStrict |
| def test_map(self): |
| def list_tensor_map(xs, y, z): |
| def body(x, y, z): |
| return x + y + z |
| |
| return map(body, xs, y, z) |
| |
| inps = (torch.ones(6, 4), torch.tensor(5), torch.tensor(4)) |
| self._test_export_same_as_eager(list_tensor_map, inps) |
| |
| @testing.expectedFailureNonStrict |
| def test_export_func_with_kwargs(self): |
| def kw_func(arg1, arg2, kw1, kw2): |
| return arg1 + arg2, kw1 + kw2 |
| |
| args = (torch.ones(6, 4), torch.ones(1, 1)) |
| kwargs = {"kw1": torch.ones(1, 1), "kw2": torch.ones(6, 4)} |
| self._test_export_same_as_eager(kw_func, args, kwargs) |
| |
| @testing.expectedFailureNonStrict |
| def test_export_func_with_pytree_kwargs(self): |
| def kw_func(arg1, arg2, a, b): |
| return arg1 + a["kw1"] + b[0], arg2 + a["kw2"] + b[1] |
| |
| args = (torch.ones(2, 3), torch.ones(3, 4)) |
| kwargs = {"a": {"kw1": torch.ones(2, 3), "kw2": torch.ones(3, 4)}, "b": [torch.ones(2, 3), torch.ones(3, 4)]} |
| self._test_export_same_as_eager(kw_func, args, kwargs) |
| |
| @testing.expectedFailureNonStrict |
| def test_export_func_with_default_kwargs(self): |
| def kw_func(arg1, arg2, a, b=1): |
| return arg1 + arg2, a["kw1"] + a["kw2"] + b |
| |
| def kw_func2(arg1, arg2, a=1, b=2): |
| return arg1 + a, arg2 + b |
| |
| |
| args = (torch.ones(6, 4), torch.ones(1, 1)) |
| kwargs1 = {"a": {"kw1": torch.ones(1, 1), "kw2": torch.ones(6, 4)}} |
| kwargs2 = {"a": {"kw1": torch.ones(1, 1), "kw2": torch.ones(6, 4)}, "b": 2} |
| self._test_export_same_as_eager(kw_func, args, kwargs1) |
| self._test_export_same_as_eager(kw_func, args, kwargs2) |
| kwargs3 = {"b": 1} |
| self._test_export_same_as_eager(kw_func2, args, kwargs3) |
| |
| @testing.expectedFailureNonStrict |
| def test_export_func_with_var_postional_args(self): |
| def kw_func(arg1, arg2, *args): |
| return arg1 + args[0], arg2 + args[1] |
| |
| args = (torch.ones(2, 3), torch.ones(3, 4), torch.ones(2, 3), torch.ones(3, 4)) |
| self._test_export_same_as_eager(kw_func, args) |
| |
| @testing.expectedFailureNonStrict |
| def test_export_func_with_keyword_only_args(self): |
| def kw_func(arg1, arg2, *args, kw1, kw2): |
| return arg1 + args[0] + kw1, arg2 + args[1] + kw2 |
| |
| args = (torch.ones(2, 3), torch.ones(3, 4), torch.ones(2, 3), torch.ones(3, 4)) |
| kwargs = {"kw1": torch.ones(2, 3), "kw2": torch.ones(3, 4)} |
| self._test_export_same_as_eager(kw_func, args, kwargs) |
| |
| @testing.expectedFailureNonStrict |
| def test_export_func_with_var_keyword_args(self): |
| def kw_func(arg1, arg2, *args, kw1, kw2, **kwargs): |
| return arg1 + args[0] + kw1 + kwargs["kw3"], arg2 + args[1] + kw2 + kwargs["kw4"] |
| |
| args = (torch.ones(2, 3), torch.ones(3, 4), torch.ones(2, 3), torch.ones(3, 4)) |
| kwargs = {"kw1": torch.ones(2, 3), "kw2": torch.ones(3, 4), "kw3": torch.ones(2, 3), "kw4": torch.ones(3, 4)} |
| self._test_export_same_as_eager(kw_func, args, kwargs) |
| |
| @testing.expectedFailureNonStrict |
| def test_export_func_with_var_keyword_pytree_args(self): |
| def kw_func(arg1, arg2, *args, kw1, kw2, **kwargs): |
| return arg1 + arg2[0][0] + args[0] + kw1[0] + kwargs["kw3"][0], arg2[1] + args[1] + kw2 + kwargs["kw4"] |
| |
| args = (torch.ones(2, 3), [(torch.ones(2, 3), ), torch.ones(3, 4)], torch.ones(2, 3), torch.ones(3, 4)) |
| kwargs = {"kw1": (torch.ones(2, 3), ), "kw2": torch.ones(3, 4), |
| "kw3": (torch.ones(2, 3), torch.ones(3, 4)), "kw4": torch.ones(3, 4)} |
| self._test_export_same_as_eager(kw_func, args, kwargs) |
| |
| @testing.expectedFailureNonStrict |
| def test_linear_conv(self): |
| |
| class MyLinear(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.weight = torch.randn(20, 98) |
| self.bias = torch.randn(20) |
| |
| def forward(self, x): |
| return torch.nn.functional.linear(x, self.weight, self.bias) |
| |
| class Foo(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.conv = torch.nn.Conv2d(16, 33, 3) |
| self.linear = MyLinear() |
| |
| def forward(self, x): |
| x_conv = self.conv(x) |
| x_linear = self.linear(x_conv) |
| return x_linear.cos() |
| |
| ep = export(Foo(), (torch.randn(20, 16, 50, 100),)) |
| for node in ep.graph.nodes: |
| if ( |
| node.op == "placeholder" and |
| node.name in ep.graph_signature.inputs_to_buffers or |
| node.name in ep.graph_signature.inputs_to_parameters |
| ): |
| self.assertTrue("source_fn_stack" in node.meta) |
| self.assertTrue("nn_module_stack" in node.meta) |
| |
| def test_export_api_with_dynamic_shapes(self): |
| from torch.export import Dim, dims, export |
| |
| # pass dynamic shapes of inputs [args] |
| def foo(x, y): |
| return torch.matmul(x, y) |
| |
| inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4)) |
| batch = Dim("batch") |
| efoo = export(foo, inputs, dynamic_shapes={k: {0: batch} for k in ["x", "y"]}) |
| self.assertEqual(efoo(*inputs).shape, foo(*inputs).shape) |
| |
| # pass dynamic shapes of inputs [kwargs] |
| def foo(x, y): |
| return torch.matmul(x, y) |
| |
| inputs = (torch.randn(10, 2, 3),) |
| kwinputs = {"y": torch.randn(10, 3, 4)} |
| batch = Dim("batch") |
| efoo = export( |
| foo, inputs, kwinputs, dynamic_shapes={k: {0: batch} for k in ["x", "y"]} |
| ) |
| self.assertEqual(efoo(*inputs, **kwinputs).shape, foo(*inputs, **kwinputs).shape) |
| |
| # pass dynamic shapes of inputs [partial, error] |
| def foo(x, y): |
| return torch.matmul(x, y) |
| |
| inputs = (torch.randn(10, 2, 3),) |
| kwinputs = {"y": torch.randn(10, 3, 4)} |
| batch = Dim("batch") |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.UserError, |
| ( |
| "Constraints violated \\(batch\\)!(.*\n)*.*" |
| "batch was inferred to be a constant(.*\n)*.*" |
| "Suggested fixes:(.*\n)*.*" |
| "batch = None # 10" |
| ), |
| ): |
| export(foo, inputs, kwinputs, dynamic_shapes={"x": {0: batch}, "y": None}) |
| |
| # pass dynamic shapes of inputs [module] |
| class Foo(torch.nn.Module): |
| def forward(self, x, y): |
| return torch.matmul(x, y) |
| |
| foo = Foo() |
| inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4)) |
| batch = Dim("batch") |
| efoo = export(foo, inputs, dynamic_shapes={"x": {0: batch}, "y": {0: batch}}) |
| self.assertEqual(efoo(*inputs).shape, foo(*inputs).shape) |
| |
| # pass dynamic shapes of inputs [bounds, mostly shared] |
| def foo(x, y): |
| return torch.matmul(x, y) |
| |
| inputs = (torch.randn(10, 3, 3), torch.randn(10, 3, 3)) |
| batch = Dim("batch", min=8, max=64) |
| size = Dim("size") |
| efoo = export( |
| foo, |
| inputs, |
| dynamic_shapes={ |
| "x": (batch, size, size), |
| "y": (batch, size, size), |
| }, |
| ) |
| self.assertEqual( |
| [ |
| str(node.meta["val"].shape) |
| for node in efoo.graph_module.graph.nodes |
| if node.op == "placeholder" |
| ], |
| ["torch.Size([s0, s1, s1])", "torch.Size([s0, s1, s1])"], |
| ) |
| self.assertEqual(efoo(*inputs).shape, foo(*inputs).shape) |
| |
| # pass dynamic shapes of inputs [multiple, mostly distinct] |
| def foo(x, y): |
| return torch.matmul(x, y) |
| |
| inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4)) |
| batch, M, K, N = dims("batch", "M", "K", "N") |
| efoo = export( |
| foo, |
| inputs, |
| dynamic_shapes={"x": (batch, M, K), "y": (batch, K, N)}, |
| ) |
| self.assertEqual( |
| [ |
| str(node.meta["val"].shape) |
| for node in efoo.graph_module.graph.nodes |
| if node.op == "placeholder" |
| ], |
| ["torch.Size([s0, s1, s2])", "torch.Size([s0, s2, s5])"], |
| ) |
| self.assertEqual(efoo(*inputs).shape, foo(*inputs).shape) |
| |
| # pass dynamic shapes of inputs [dict] |
| class Foo(torch.nn.Module): |
| def forward(self, inputs): |
| return torch.matmul(inputs["x"], inputs["y"]) |
| |
| foo = Foo() |
| inputs = ({"x": torch.randn(10, 2, 3), "y": torch.randn(10, 3, 4)},) |
| batch = Dim("batch") |
| efoo = export( |
| foo, inputs, dynamic_shapes={"inputs": {k: {0: batch} for k in ["x", "y"]}} |
| ) |
| self.assertEqual( |
| [ |
| str(node.meta["val"].shape) |
| for node in efoo.graph_module.graph.nodes |
| if node.op == "placeholder" |
| ], |
| ["torch.Size([s0, 2, 3])", "torch.Size([s0, 3, 4])"], |
| ) |
| self.assertEqual(efoo(*inputs).shape, foo(*inputs).shape) |
| |
| # pass dynamic shapes of inputs [list] |
| class Foo(torch.nn.Module): |
| def forward(self, inputs): |
| return torch.matmul(inputs[0], inputs[1]) |
| |
| foo = Foo() |
| inputs = ((torch.randn(10, 2, 3), torch.randn(10, 3, 4)),) |
| batch = Dim("batch") |
| efoo = export( |
| foo, inputs, dynamic_shapes={"inputs": [{0: batch} for _ in range(2)]} |
| ) |
| self.assertEqual( |
| [ |
| str(node.meta["val"].shape) |
| for node in efoo.graph_module.graph.nodes |
| if node.op == "placeholder" |
| ], |
| ["torch.Size([s0, 2, 3])", "torch.Size([s0, 3, 4])"], |
| ) |
| self.assertEqual(efoo(*inputs).shape, foo(*inputs).shape) |
| |
| # pass dynamic shapes of inputs [dataclass] |
| @dataclass |
| class DataClass: |
| a: Tensor |
| b: Tensor |
| |
| register_dataclass_as_pytree_node(DataClass) |
| |
| class Foo(torch.nn.Module): |
| def forward(self, inputs): |
| return torch.matmul(inputs.a, inputs.b) |
| |
| foo = Foo() |
| inputs = (DataClass(a=torch.randn(10, 2, 3), b=torch.randn(10, 3, 4)),) |
| batch = Dim("batch") |
| efoo = export( |
| foo, inputs, dynamic_shapes={"inputs": DataClass(a={0: batch}, b={0: batch})} |
| ) |
| self.assertEqual( |
| [ |
| str(node.meta["val"].shape) |
| for node in efoo.graph_module.graph.nodes |
| if node.op == "placeholder" |
| ], |
| ["torch.Size([s0, 2, 3])", "torch.Size([s0, 3, 4])"], |
| ) |
| |
| # pass dynamic shapes of inputs [distinct, error] |
| def foo(x, y): |
| return torch.matmul(x, y) |
| |
| inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4)) |
| batch, M, K1, K2, N = dims("batch", "M", "K1", "K2", "N") |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.UserError, |
| ( |
| "Constraints violated \\(K2\\)!(.*\n)*.*" |
| "K2.*and.*K1.*must always be equal(.*\n)*.*" |
| "Suggested fixes:(.*\n)*.*" |
| "K2 = K1" |
| ), |
| ): |
| export( |
| foo, |
| inputs, |
| dynamic_shapes={"x": (batch, M, K1), "y": (batch, K2, N)}, |
| ) |
| |
| # pass dynamic shapes of inputs [specialized, error] |
| def foo(x, y): |
| return torch.matmul(x, y) |
| |
| inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4)) |
| batch, M, K1, N = dims("batch", "M", "K1", "N") |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.UserError, |
| ( |
| "Constraints violated \\(K1\\)!(.*\n)*.*" |
| "K1 was inferred to be a constant(.*\n)*.*" |
| "Suggested fixes:(.*\n)*.*" |
| "K1 = None # 3" |
| ), |
| ): |
| export( |
| foo, |
| inputs, |
| dynamic_shapes={"x": (batch, M, K1), "y": (batch, None, N)}, |
| ) |
| |
| # pass dynamic shapes of inputs [guards, error] |
| def foo(x, y): |
| if x.shape[0] < 16 and y.shape[1] % 3 == 0: |
| return torch.matmul(x, y) |
| else: |
| return x + y |
| |
| inputs = (torch.randn(10, 2, 3), torch.randn(10, 3, 4)) |
| batch, M, K, N = dims("batch", "M", "K", "N") |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.UserError, |
| ( |
| "Constraints violated \\(batch\\)!(.*\n)*.*" |
| "Not all values of batch.*satisfy the generated guard(.*\n)*.*" |
| "Specializations unexpectedly required \\(K\\)!(.*\n)*.*" |
| "K.*specialized.*because the guards generated for it are too complex(.*\n)*.*" |
| "Suggested fixes:(.*\n)*.*" |
| "batch = Dim\\('batch', max=15\\)(.*\n)*.*" |
| "K = None # 3" |
| ), |
| ): |
| export( |
| foo, |
| inputs, |
| dynamic_shapes={"x": (batch, M, K), "y": (batch, K, N)}, |
| ) |
| |
| def test_dynamic_shapes_spec_with_pytree(self): |
| from torch.export import Dim, export |
| from torch.utils._pytree import tree_map |
| |
| inputs = { |
| "tensor": torch.randn(3), |
| "dict_of_tensors": {k: torch.randn(3) for k in ["A", "B", "C", "D"]}, |
| "list_of_tensors": [torch.randn(3) for _ in range(4)], |
| } |
| |
| batch = Dim("batch") |
| # uniformly specify dynamic shapes for all inputs |
| spec = tree_map(lambda x: {0: batch}, inputs) |
| |
| def foo(inputs): |
| return ( |
| inputs["tensor"] |
| + inputs["dict_of_tensors"]["A"] |
| + inputs["list_of_tensors"][0] |
| ) |
| |
| ep = export(foo, (inputs,), dynamic_shapes={"inputs": spec}) |
| input_shapes = [ |
| str(node.meta["val"].shape) |
| for node in ep.graph_module.graph.nodes |
| if node.op == "placeholder" |
| ] |
| self.assertEqual(len(input_shapes), 9) |
| self.assertTrue(all(shape == "torch.Size([s0])" for shape in input_shapes)) |
| |
| @testing.expectedFailureNonStrict |
| def test_error_does_not_reference_eager_fallback(self): |
| def fn_ddo(x): |
| y = x.nonzero() |
| z = y.shape[0] |
| if z > 2: |
| return x.cos() |
| else: |
| return x.sin() |
| |
| with self.assertRaisesRegex( |
| torchdynamo.exc.UserError, |
| r"^(?!.*fall back to eager).*" |
| ): |
| _ = export(fn_ddo, (torch.tensor([2, 3, 5]),)) |
| |
| def test_pytree_register_data_class(self): |
| |
| @dataclass |
| class MyDataClass: |
| x: int |
| y: int |
| z: int = None |
| |
| dt = MyDataClass(x=3, y=4) |
| flat, spec = tree_flatten(dt) |
| self.assertTrue(spec, LeafSpec()) |
| self.assertTrue(len(flat) == 1) |
| |
| register_dataclass_as_pytree_node(MyDataClass, serialized_type_name="test_pytree_register_data_class.MyDataClass") |
| |
| flat, spec = tree_flatten(dt) |
| self.assertEqual( |
| spec, |
| TreeSpec( |
| MyDataClass, |
| ( |
| MyDataClass, |
| ['x', 'y'], |
| ['z'] |
| ), |
| [LeafSpec(), LeafSpec()] |
| ) |
| ) |
| self.assertEqual(flat, [3, 4]) |
| |
| orig_dt = tree_unflatten(flat, spec) |
| self.assertTrue(isinstance(orig_dt, MyDataClass)) |
| self.assertEqual(orig_dt.x, 3) |
| self.assertEqual(orig_dt.y, 4) |
| self.assertEqual(orig_dt.z, None) |
| |
| roundtrip_spec = treespec_loads(treespec_dumps(spec)) |
| self.assertEqual(roundtrip_spec, spec) |
| |
| @dataclass |
| class MyOtherDataClass: # the pytree registration don't allow registering the same class twice |
| x: int |
| y: int |
| z: int = None |
| |
| # Override the registration with keep none fields |
| register_dataclass_as_pytree_node(MyOtherDataClass, return_none_fields=True, serialized_type_name="test_pytree_regster_data_class.MyOtherDataClass") |
| |
| dt = MyOtherDataClass(x=3, y=4) |
| flat, spec = tree_flatten(dt) |
| self.assertEqual( |
| spec, |
| TreeSpec( |
| MyOtherDataClass, |
| ( |
| MyOtherDataClass, |
| ['x', 'y', 'z'], |
| [], |
| ), |
| [LeafSpec(), LeafSpec(), LeafSpec()] |
| ) |
| ) |
| self.assertEqual(flat, [3, 4, None]) |
| |
| orig_dt = tree_unflatten(flat, spec) |
| self.assertTrue(isinstance(orig_dt, MyOtherDataClass)) |
| self.assertEqual(orig_dt.x, 3) |
| self.assertEqual(orig_dt.y, 4) |
| self.assertEqual(orig_dt.z, None) |
| |
| roundtrip_spec = treespec_loads(treespec_dumps(spec)) |
| self.assertEqual(roundtrip_spec, spec) |
| |
| def test_pytree_register_nested_data_class(self): |
| |
| @dataclass |
| class Inner: |
| x: int |
| y: int |
| |
| @dataclass |
| class Outer: |
| xy: Inner |
| ab: Inner |
| |
| xy = Inner(1, 2) |
| ab = Inner(3, 4) |
| dt = Outer(xy, ab) |
| inp = {"dt1": (dt, ({},)), "dt2": ((torch.ones(1),), dt)} |
| |
| register_dataclass_as_pytree_node(Inner, serialized_type_name="test_pytree_register_nested_data_class.Inner") |
| register_dataclass_as_pytree_node(Outer, serialized_type_name="test_pytree_register_nested_data_class.Outer") |
| |
| flat, spec = tree_flatten(inp) |
| self.assertEqual(flat, [1, 2, 3, 4, torch.ones(1), 1, 2, 3, 4]) |
| |
| unflat = tree_unflatten(flat, spec) |
| self.assertEqual(unflat, inp) |
| |
| roundtrip_spec = treespec_loads(treespec_dumps(spec)) |
| self.assertEqual(roundtrip_spec, spec) |
| |
| def test_param_util(self): |
| class Basic(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.lin = torch.nn.Linear(10, 1) |
| |
| def forward(self, x): |
| return self.lin(x) |
| |
| ep = export(Basic(), (torch.randn(5, 10),)) |
| num_params = 0 |
| params = [] |
| for node in ep.graph.nodes: |
| if is_param(ep, node): |
| num_params += 1 |
| params.append(get_param(ep, node)) |
| self.assertEqual(num_params, 2) |
| self.assertEqual(params[0].shape, [1, 10]) # weight |
| self.assertEqual(params[1].shape, [1]) # bias |
| |
| def test_buffer_util(self): |
| ep = export(torch.nn.BatchNorm2d(100, affine=False), (torch.ones(20, 100, 35, 45), )) |
| num_buffer = 0 |
| buffer = [] |
| |
| for node in ep.graph.nodes: |
| if is_buffer(ep, node): |
| num_buffer += 1 |
| buffer.append(get_buffer(ep, node)) |
| self.assertEqual(num_buffer, 3) |
| |
| self.assertEqual(buffer[0].shape, torch.Size([100])) # running_mean |
| self.assertEqual(buffer[1].shape, torch.Size([100])) # running_var |
| self.assertEqual(buffer[2].shape, torch.Size([])) # num_batches_tracked |
| |
| |
| @testing.expectedFailureNonStrict |
| def test_export_dynamo_config(self): |
| class MyModule(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.lstm = torch.nn.LSTM(input_size=4, hidden_size=5, num_layers=1) |
| |
| def forward(self, inputs: torch.Tensor) -> torch.Tensor: |
| return self.lstm(inputs) |
| |
| |
| config = DEFAULT_EXPORT_DYNAMO_CONFIG |
| mod = MyModule() |
| |
| @contextmanager |
| def _patch_config(kwargs): |
| orig_config_dict = dataclasses.asdict(config) |
| |
| try: |
| for k, v in kwargs.items(): |
| setattr(config, k, v) |
| yield |
| finally: |
| for k, v in orig_config_dict.items(): |
| setattr(config, k, v) |
| |
| inp = (torch.rand(5, 4), ) |
| exported_program = export(mod, inp) |
| |
| with _patch_config({"allow_rnn": False}): |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.Unsupported, |
| "TorchDynamo purposely graph breaks on RNN, GRU, LSTMs" |
| ): |
| _ = export(mod, inp) |
| |
| @testing.expectedFailureNonStrict |
| def test_module(self): |
| |
| class MyLinear(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.weight = torch.randn(20, 98) |
| self.bias = torch.randn(20) |
| |
| def forward(self, x): |
| return torch.nn.functional.linear(x, self.weight, self.bias) |
| |
| class Foo(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.conv = torch.nn.Conv2d(16, 33, 3) |
| self.linear = MyLinear() |
| |
| def forward(self, x): |
| a, b = x |
| a_conv = self.conv(a) |
| a_linear = self.linear(a_conv) |
| b_conv = self.conv(b) |
| b_linear = self.linear(b_conv) |
| return (a_linear.cos() + b_linear.sin(), a_linear.sin() + b_linear.cos()) |
| |
| inp_container = ((torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)),) |
| |
| ep = export(Foo(), inp_container) |
| ep_rexported = export(ep.module(), inp_container) |
| |
| inp_test = ((torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)),) |
| |
| self.assertTrue(torch.allclose(ep(*inp_test)[0], ep_rexported(*inp_test)[0])) |
| self.assertTrue(torch.allclose(ep(*inp_test)[1], ep_rexported(*inp_test)[1])) |
| |
| @testing.expectedFailureNonStrict |
| def test_module_with_dict_container_inp_out(self): |
| |
| class MyLinear(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.weight = torch.randn(20, 98) |
| self.bias = torch.randn(20) |
| |
| def forward(self, x): |
| return torch.nn.functional.linear(x, self.weight, self.bias) |
| |
| class Foo(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.conv = torch.nn.Conv2d(16, 33, 3) |
| self.linear = MyLinear() |
| |
| def forward(self, x): |
| a1, a2 = x["a"] |
| b = x["b"] |
| a1_conv = self.conv(a1) |
| a1_linear = self.linear(a1_conv) |
| a2_conv = self.conv(a2) |
| a2_linear = self.linear(a2_conv) |
| b_conv = self.conv(b) |
| b_linear = self.linear(b_conv) |
| return {"a": a1_linear.cos() + b_linear.sin(), "b": a2_linear.sin() + b_linear.cos()} |
| |
| inp_container = ({"a": (torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)), "b": torch.randn(20, 16, 50, 100)},) |
| |
| ep = export(Foo(), inp_container) |
| ep_rexported = export(ep.module(), inp_container) |
| |
| inp_test = ({"a": (torch.randn(20, 16, 50, 100), torch.randn(20, 16, 50, 100)), "b": torch.randn(20, 16, 50, 100)},) |
| |
| self.assertTrue(torch.allclose(ep(*inp_test)["a"], ep_rexported(*inp_test)["a"])) |
| self.assertTrue(torch.allclose(ep(*inp_test)["b"], ep_rexported(*inp_test)["b"])) |
| |
| @testing.expectedFailureNonStrict |
| def test_args_type_checked(self): |
| def fn(x): |
| return x + 1 |
| |
| inp = torch.rand(2, 2) |
| with self.assertRaisesRegex(torch._dynamo.exc.UserError, "to be a tuple"): |
| # Intentionally not wrapping `inp` in a tuple to trigger the error |
| _ = export(fn, inp) |
| |
| @testing.expectedFailureNonStrict |
| def test_constrain_value_with_no_default(self): |
| def fn(x, y): |
| n = x.max().item() |
| torch._constrain_as_value(n) |
| return y + n |
| |
| ep = export(fn, (torch.randint(3, 5, (2, 2)), torch.randint(3, 5, (2, 3)))) |
| test_inp = (torch.randint(3, 5, (2, 2)), torch.randint(3, 5, (2, 3))) |
| self.assertTrue(torch.allclose(ep(*test_inp), fn(*test_inp))) |
| |
| @testing.expectedFailureNonStrict |
| def test_constrain_value_with_symfloat(self): |
| def fn(x, y): |
| n = x.max().item() |
| torch._constrain_as_value(n) |
| return y + n |
| |
| with self.assertRaisesRegex(torch._dynamo.exc.TorchRuntimeError, "Constraining SymFloat or Symbool is nyi"): |
| _ = export(fn, (torch.rand(2, 2), torch.rand(2, 3))) |
| |
| @testing.expectedFailureNonStrict |
| def test_constrain_size_in_eager(self): |
| def fn(x, y): |
| n = x.max().item() |
| torch._constrain_as_size(n) |
| return y + n |
| |
| ep = export(fn, (torch.randint(1, 2, (2, 2)), torch.randint(3, 5, (2, 3)))) |
| test_inp = (torch.randint(1, 2, (2, 2)), torch.randint(3, 5, (2, 3))) |
| self.assertTrue(torch.allclose(ep(*test_inp), fn(*test_inp))) |
| |
| @testing.expectedFailureNonStrict |
| def test_constrain_size_with_constrain_value(self): |
| def fn(x, y): |
| n = x.max().item() |
| torch._constrain_as_value(n, 2, 10) |
| torch._constrain_as_size(n) |
| return y + n |
| |
| with self.assertRaisesRegex(RuntimeError, r"Invalid value range for 1 between \[2, 10\]."): |
| _ = fn(torch.randint(1, 2, (2, 2)), torch.randint(3, 5, (2, 3))) |
| |
| ep = export(fn, (torch.randint(3, 4, (2, 2)), torch.randint(3, 5, (2, 3)))) |
| with self.assertRaisesRegex(RuntimeError, "is outside of inline constraint"): |
| test_inp = (torch.randint(1, 2, (2, 2)), torch.randint(3, 5, (2, 3))) |
| _ = ep(*test_inp) |
| |
| @testing.expectedFailureNonStrict |
| def test_constrain_size_with_various_cases(self): |
| |
| def case_1(x, y): |
| n = x.item() |
| torch._constrain_as_size(n, min=0) |
| return y.sum() + torch.ones(n, 5).sum() |
| |
| def case_2(x, y): |
| n = x.item() |
| torch._constrain_as_size(n, min=0, max=6) |
| return y.sum() + torch.ones(n, 5).sum() |
| |
| def case_3(x, y): |
| n = x.item() |
| torch._constrain_as_size(n, min=0, max=1) |
| return y.sum() + torch.ones(n, 5).sum() |
| |
| def case_4(x, y): |
| n = x.item() |
| torch._constrain_as_size(n, min=2) |
| return y.sum() + torch.ones(n, 5).sum() |
| |
| def case_5(x, y): |
| n = x.item() |
| torch._constrain_as_size(n, min=1) |
| return y.sum() + torch.ones(n, 5).sum() |
| |
| ep = export(case_1, (torch.tensor(1), torch.ones(4, 5))) |
| |
| with self.assertRaisesRegex(RuntimeError, r"Invalid value range for -1 between"): |
| _ = case_1(torch.tensor(-1), torch.randn(4, 5)) |
| |
| self.assertTrue( |
| torch.allclose( |
| ep(torch.tensor(1), torch.ones(4, 5)), |
| case_1(torch.tensor(1), torch.ones(4, 5)), |
| ) |
| ) |
| |
| ep = export(case_2, (torch.tensor(5), torch.randn(4, 5))) |
| |
| with self.assertRaisesRegex(RuntimeError, r"Invalid value range for 7 between"): |
| _ = case_2(torch.tensor(7), torch.randn(4, 5)) |
| |
| with self.assertRaisesRegex(RuntimeError, r"Invalid value range for 9 between"): |
| _ = case_2(torch.tensor(9), torch.randn(4, 5)) |
| |
| self.assertTrue( |
| torch.allclose( |
| ep(torch.tensor(5), torch.ones(4, 5)), |
| case_2(torch.tensor(5), torch.ones(4, 5)), |
| ) |
| ) |
| |
| with self.assertRaisesRegex(RuntimeError, "Max value to constrain_range_for_size must be greater than 2. got: 1"): |
| _ = case_3(torch.tensor(1), torch.randn(4, 5)) |
| |
| with self.assertRaisesRegex(RuntimeError, r"Invalid value range for 1 between \[2, 9223372036854775807\]."): |
| _ = case_4(torch.tensor(1), torch.randn(4, 5)) |
| |
| ep = export(case_4, (torch.tensor(5), torch.randn(4, 5))) |
| |
| with self.assertRaisesRegex(RuntimeError, r"Invalid value range for 1"): |
| _ = case_4(torch.tensor(1), torch.randn(4, 5)) |
| |
| self.assertTrue( |
| torch.allclose( |
| ep(torch.tensor(5), torch.ones(4, 5)), |
| case_4(torch.tensor(5), torch.ones(4, 5)), |
| ) |
| ) |
| |
| ep = export(case_5, (torch.tensor(5), torch.randn(4, 5))) |
| |
| with self.assertRaisesRegex(RuntimeError, r"Invalid value range for 0"): |
| _ = case_5(torch.tensor(0), torch.randn(4, 5)) |
| |
| self.assertTrue( |
| torch.allclose( |
| ep(torch.tensor(5), torch.ones(4, 5)), |
| case_5(torch.tensor(5), torch.ones(4, 5)), |
| ) |
| ) |
| |
| @testing.expectedFailureNonStrict |
| def test_mixed_input(self): |
| def func(a, b, alpha: int): |
| return torch.add(a, b, alpha=alpha) |
| |
| a = torch.rand(1, 2) |
| b = torch.rand(1, 2) |
| alpha = 10 |
| |
| exported = export(func, (a, b, alpha)) |
| for node in exported.graph_module.graph.nodes: |
| if node.op == "placeholder": |
| self.assertTrue(isinstance(node.meta["val"], (Tensor, int))) |
| |
| @testing.expectedFailureNonStrict |
| def test_export_with_inline_constraints(self): |
| def f(x): |
| a = x.item() |
| torch._constrain_as_value(a, 4, 7) |
| return torch.empty((a, 4)) |
| |
| ep = export(f, (torch.tensor([5]),)) |
| self.assertEqual(ep(torch.tensor([6])).shape, (6, 4)) |
| |
| FileCheck().check_count( |
| "torch.ops.aten.sym_constrain_range.default", 1, exactly=True |
| ).run(ep.graph_module.code) |
| |
| with self.assertRaisesRegex( |
| RuntimeError, |
| r"_local_scalar_dense is outside of inline constraint \[4, 7\]", |
| ) as cm: |
| ep(torch.tensor([30])) |
| |
| @testing.expectedFailureNonStrict |
| def test_export_with_inline_constraints_complex(self): |
| def f(x): |
| a = x.item() |
| torch._constrain_as_value(a, 4, 7) |
| empty = torch.empty((a, 4)) |
| |
| return torch.cat((empty.transpose(0, 1), torch.zeros(6, a)), 0) |
| |
| ep = export(f, (torch.tensor([6]),)) |
| self.assertEqual(ep(torch.tensor([5])).shape, (10, 5)) |
| FileCheck().check_count( |
| "torch.ops.aten.sym_constrain_range.default", 1, exactly=True |
| ).run(ep.graph_module.code) |
| |
| def test_to_module_with_mutated_buffer(self): |
| |
| class Foo(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.register_buffer("buf", torch.zeros(1)) |
| |
| def forward(self, x): |
| self.buf.add_(1) |
| return x.sum() + self.buf.sum() |
| |
| exported = export(Foo(), (torch.ones(5, 5),)) |
| stateful_gm = exported.module() |
| export_return_val = stateful_gm(torch.ones(5, 5)) |
| eager = Foo() |
| eager_return_val = eager(torch.ones(5, 5)) |
| self.assertTrue(torch.allclose(eager_return_val, export_return_val)) |
| |
| for name, buffer in stateful_gm.named_buffers(): |
| self.assertTrue(torch.allclose(torch.ones(1), buffer)) |
| |
| changed = stateful_gm.graph.eliminate_dead_code() |
| self.assertFalse(changed) |
| self.assertTrue(torch.allclose(stateful_gm(torch.ones(5, 5)), eager(torch.ones(5, 5)))) |
| |
| for name, buffer in stateful_gm.named_buffers(): |
| self.assertTrue(torch.allclose(torch.tensor(2, dtype=torch.float), buffer)) |
| |
| def test_to_module_with_mutated_buffer_multiple(self): |
| |
| class Bar(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.register_buffer("buf", torch.ones(1)) |
| |
| def forward(self, x): |
| self.buf.add_(1) |
| return x.sum() + self.buf.sum() |
| |
| class Foo(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.register_buffer("buf", torch.zeros(1)) |
| self.bar = Bar() |
| |
| def forward(self, x): |
| self.buf.add_(1) |
| self.bar.buf.add_(2) |
| bar = self.bar(x) |
| return bar.sum() + self.buf.sum() |
| |
| exported = export(Foo(), (torch.ones(5, 5),)) |
| stateful_gm = exported.module() |
| export_return_val = stateful_gm(torch.ones(5, 5)) |
| eager = Foo() |
| eager_return_val = eager(torch.ones(5, 5)) |
| self.assertTrue(torch.allclose(eager_return_val, export_return_val)) |
| |
| for name, buffer in stateful_gm.named_buffers(): |
| if name == "L__self___buf": |
| self.assertTrue(torch.allclose(torch.ones(1), buffer)) |
| if name == "L__self___bar_buf": |
| self.assertTrue(torch.allclose(torch.tensor(4, dtype=torch.float), buffer)) |
| |
| changed = stateful_gm.graph.eliminate_dead_code() |
| self.assertFalse(changed) |
| self.assertTrue(torch.allclose(stateful_gm(torch.ones(5, 5)), eager(torch.ones(5, 5)))) |
| |
| for name, buffer in stateful_gm.named_buffers(): |
| if name == "L__self___buf": |
| self.assertTrue(torch.allclose(torch.tensor(2, dtype=torch.float), buffer)) |
| if name == "L__self___bar_buf": |
| self.assertTrue(torch.allclose(torch.tensor(7, dtype=torch.float), buffer)) |
| |
| def test_runtime_assert_for_prim(self): |
| def f(x, y): |
| return x + y |
| |
| tensor_inp = torch.ones(7, 5) |
| dim0_x = torch.export.Dim("dim0_x", min=6) |
| dynamic_shapes = {"x": {0: dim0_x}, "y": None} |
| exported = torch.export.export(f, (tensor_inp, 5), dynamic_shapes=dynamic_shapes) |
| self.assertTrue( |
| torch.allclose(exported(torch.ones(8, 5), 5), f(torch.ones(8, 5), 5)) |
| ) |
| with self.assertRaisesRegex( |
| RuntimeError, "is specialized to be 5 at tracing time" |
| ): |
| _ = exported(torch.ones(8, 5), 6) |
| |
| exported = torch.export.export(f, (tensor_inp, 5.0), dynamic_shapes=dynamic_shapes) |
| with self.assertRaisesRegex( |
| RuntimeError, "is specialized to be 5.0 at tracing time" |
| ): |
| _ = exported(torch.ones(7, 5), 6.0) |
| |
| @testing.expectedFailureNonStrict |
| def test_runtime_assert_for_prm_str(self): |
| |
| def g(a, b, mode): |
| return torch.div(a, b, rounding_mode=mode) |
| |
| inps = (torch.randn(4, 4), torch.randn(4), "trunc") |
| exported = export(g, inps) |
| with self.assertRaisesRegex(RuntimeError, "is specialized to be trunc at"): |
| _ = exported(torch.randn(4, 4), torch.randn(4), "floor") |
| self.assertTrue(torch.allclose(exported(*inps), g(*inps))) |
| |
| def test_to_module_with_mutated_buffer_multiple_update_sub_later(self): |
| |
| class Bar(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.register_buffer("buf", torch.ones(1)) |
| |
| def forward(self, x): |
| self.buf.add_(1) |
| return x.sum() + self.buf.sum() |
| |
| class Foo(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.register_buffer("buf", torch.zeros(1)) |
| self.bar = Bar() |
| |
| def forward(self, x): |
| self.buf.add_(1) |
| bar = self.bar(x) |
| self.bar.buf.add_(2) |
| return bar.sum() + self.buf.sum() |
| |
| exported = export(Foo(), (torch.ones(5, 5),)) |
| stateful_gm = exported.module() |
| export_return_val = stateful_gm(torch.ones(5, 5)) |
| eager = Foo() |
| eager_return_val = eager(torch.ones(5, 5)) |
| self.assertTrue(torch.allclose(eager_return_val, export_return_val)) |
| |
| for name, buffer in stateful_gm.named_buffers(): |
| if name == "L__self___buf": |
| self.assertTrue(torch.allclose(torch.ones(1), buffer)) |
| if name == "L__self___bar_buf": |
| self.assertTrue(torch.allclose(torch.tensor(4, dtype=torch.float), buffer)) |
| |
| changed = stateful_gm.graph.eliminate_dead_code() |
| self.assertFalse(changed) |
| self.assertTrue(torch.allclose(stateful_gm(torch.ones(5, 5)), eager(torch.ones(5, 5)))) |
| |
| for name, buffer in stateful_gm.named_buffers(): |
| if name == "L__self___buf": |
| self.assertTrue(torch.allclose(torch.tensor(2, dtype=torch.float), buffer)) |
| if name == "L__self___bar_buf": |
| self.assertTrue(torch.allclose(torch.tensor(7, dtype=torch.float), buffer)) |
| |
| def test_retracable_ep(self): |
| class Bar(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.register_buffer("buf", torch.ones(1)) |
| |
| def forward(self, x): |
| self.buf.add_(1) |
| return x.sum() + self.buf.sum() |
| |
| class Foo(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.register_buffer("buf", torch.zeros(1)) |
| self.bar = Bar() |
| |
| def forward(self, x): |
| self.buf.add_(1) |
| bar = self.bar(x) |
| self.bar.buf.add_(2) |
| return bar.sum() + self.buf.sum() |
| |
| inp = torch.ones(5, 5) |
| exported = torch.export.export(Foo(), (inp,)) |
| reexported = torch.export.export(exported, (inp,)) |
| |
| self.assertTrue(torch.allclose(exported(inp), reexported(inp))) |
| |
| dim0_x = torch.export.Dim("dim0_x") |
| exported = torch.export.export(Foo(), (inp,), dynamic_shapes={"x": {0: dim0_x}}) |
| reexported = torch.export.export(exported, (inp,)) |
| with self.assertRaisesRegex(RuntimeError, "shape\[0\] is specialized at 5"): |
| reexported(torch.ones(7, 5)) |
| |
| reexported = torch.export.export(exported, (inp,), dynamic_shapes=({0: dim0_x},)) |
| self.assertTrue(torch.allclose(exported(torch.ones(7, 5)), reexported(torch.ones(7, 5)))) |
| |
| # can't retrace with invalid inputs with respect to the original ExportedProgram |
| dim0_x_v2 = torch.export.Dim("dim0_x_v2", min=3) |
| exported_v2 = torch.export.export(Foo(), (inp,), dynamic_shapes={"x": {0: dim0_x_v2}}) |
| with self.assertRaisesRegex(RuntimeError, "shape\[1\] is specialized at 5"): |
| torch.export.export(exported_v2, (torch.randn(2, 2),)) |
| |
| @testing.expectedFailureNonStrict |
| def test_retrace_graph_level_meta_preservation(self): |
| class Foo(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| |
| def forward(self, x): |
| if x.shape[0] > 4: |
| return x.cos() |
| return x.sin() |
| |
| inp = torch.ones(7, 5) |
| dim0_x = torch.export.Dim("dim0_x", min=6) |
| exported = torch.export.export(Foo(), (inp,), dynamic_shapes={"x": {0: dim0_x}}) |
| stateful_module = exported.module() |
| self.assertTrue(len(stateful_module.meta["input_shape_constraints"]), 1) |
| |
| re_exported = export(stateful_module, (inp,), constraints=[dynamic_dim(inp, 0) > 5]) |
| self.assertTrue(len(re_exported.graph_module.meta["input_shape_constraints"]) == 1) |
| self.assertTrue( |
| torch.allclose(exported(torch.ones(7, 5)), re_exported(torch.ones(7, 5))) |
| ) |
| |
| re_exported_v2 = export(exported, (inp,)) |
| self.assertTrue(len(re_exported_v2.graph_module.meta["input_shape_constraints"]) == 0) |
| self.assertTrue( |
| torch.allclose(exported(torch.ones(7, 5)), re_exported_v2(torch.ones(7, 5))) |
| ) |
| |
| @testing.expectedFailureNonStrict |
| def test_constrain_as_size_error(self): |
| |
| def f(x): |
| a = x.item() |
| # We cannot automatically infer a is a size here because view |
| # accepts -1 |
| return torch.randn(24).view(a, 4) |
| |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.UserError, |
| "Tried to use data-dependent value in the subsequent computation" |
| ): |
| _ = export(f, (torch.tensor(6),)) |
| |
| def test_constraint_directly_construct(self): |
| with self.assertRaisesRegex( |
| TypeError, |
| "Constraint has no public constructor. Please use torch.export.dynamic_dim" |
| ): |
| _ = Constraint() |
| |
| def test_train_eval_on_exported_preautograd_module(self): |
| class Foo(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| |
| def forward(self, x): |
| if x.shape[0] > 4: |
| return x.cos() |
| return x.sin() |
| |
| graph_module = capture_pre_autograd_graph(Foo(), (torch.ones(7, 5),)) |
| with self.assertRaisesRegex(NotImplementedError, r"Calling train\(\) is not supported yet."): |
| graph_module.train() |
| |
| with self.assertRaisesRegex(NotImplementedError, r"Calling eval\(\) is not supported yet."): |
| graph_module.eval() |
| |
| def test_export_cond_preserve_stack_trace_for_subgraphs(self): |
| class MySubModule(torch.nn.Module): |
| def foo(self, x): |
| return x.cos() |
| |
| def forward(self, x): |
| return self.foo(x) |
| |
| class CondBranchClassMethod(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.subm = MySubModule() |
| |
| def bar(self, x): |
| return x.sin() |
| |
| def forward(self, x): |
| return cond(x.shape[0] <= 2, self.subm.forward, self.bar, [x]) |
| |
| |
| from torch._export import capture_pre_autograd_graph |
| |
| example_inputs = (torch.randn(1, 3, 3, 3),) |
| m = CondBranchClassMethod() |
| m.eval() |
| gm = capture_pre_autograd_graph(m, example_inputs) |
| |
| actual_source_fns = [] |
| for mod in gm.modules(): |
| for node in mod.graph.nodes: |
| if node.name in {"sin", "cos"}: |
| source_fn_st = node.meta.get("source_fn_stack", None) |
| if source_fn_st is not None: |
| source_names = [] |
| for source_fn in source_fn_st: |
| source_names.append(source_fn[0]) |
| actual_source_fns.append(source_names) |
| exp_source_fns = [["cond", "cos"], ["cond", "sin"]] |
| self.assertEqual(actual_source_fns, exp_source_fns) |
| |
| @testing.expectedFailureNonStrict |
| def test_lifted_constants(self) -> None: |
| def f(x): |
| return x + torch.tensor(3) |
| |
| ep = export(f, (torch.tensor(1),)) |
| |
| self.assertEqual(len(ep.graph_signature.input_specs), 2) |
| self.assertEqual(len(ep.tensor_constants), 1) |
| |
| class Foo(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.a = torch.tensor(3) |
| |
| def forward(self, x): |
| list_tensor = [torch.tensor(3), torch.tensor(4)] |
| return x + self.a + list_tensor[0] + list_tensor[1] |
| |
| ep = export(Foo(), (torch.tensor(1),)) |
| |
| self.assertEqual(len(ep.graph_signature.input_specs), 4) |
| self.assertEqual(len(ep.state_dict), 1) |
| self.assertEqual(len(ep.tensor_constants), 2) |
| |
| inp = (torch.randn(1),) |
| self.assertTrue(torch.allclose(ep(*inp), Foo()(*inp))) |
| |
| transform = ep.run_decompositions() |
| self.assertEqual(len(ep.graph_signature.input_specs), 4) |
| self.assertTrue(torch.allclose(ep(*inp), transform(*inp))) |
| |
| unlifted = ep.module() |
| self.assertTrue(torch.allclose(ep(*inp), unlifted(*inp))) |
| |
| def test_preserve_shape_dynamism_for_unused_inputs(self): |
| @dataclass |
| class Input: |
| f: torch.Tensor |
| p: torch.Tensor |
| |
| torch._export.utils.register_dataclass_as_pytree_node(Input) |
| |
| class Module(torch.nn.Module): |
| def forward(self, x: Input): |
| return x.f + 1 |
| |
| mod = Module() |
| example_inputs = (Input(f=torch.ones(10, 4), p=torch.zeros(10, 4)),) |
| ep_static = torch.export.export(mod, example_inputs) |
| for node in ep_static.graph.nodes: |
| if node.op == "placeholder": |
| for s in node.meta["val"].shape: |
| self.assertIsInstance(s, int) |
| |
| dim0_x_f, dim0_x_p = torch.export.dims("dim0_x_f", "dim0_x_p") |
| dynamic_shapes = {"x": Input(f={0: dim0_x_f}, p={0: dim0_x_p})} |
| ep_dynamic = torch.export.export(mod, example_inputs, dynamic_shapes=dynamic_shapes) |
| for node in ep_dynamic.graph.nodes: |
| if node.op == "placeholder": |
| for i, s in enumerate(node.meta["val"].shape): |
| if i == 0: |
| self.assertIsInstance(s, torch.SymInt) |
| else: |
| self.assertIsInstance(s, int) |
| |
| def test_multiple_definitions_same_name_dim(self): |
| def foo(x, y): |
| return torch.matmul(x, y) |
| |
| A = torch.export.Dim("C", min=3) |
| B = torch.export.Dim("C", max=12) |
| with self.assertRaisesRegex( |
| torch._dynamo.exc.UserError, |
| "Found different definitions Dim\\(.*min=3\\) and Dim\\(.*max=12\\) " |
| "for the same symbolic dimension", |
| ): |
| torch.export.export( |
| foo, |
| (torch.randn(10, 10), torch.randn(10, 10)), |
| dynamic_shapes={"x": (A, B), "y": (B, A)}, |
| ) |
| |
| def test_export_with_wrong_inputs(self): |
| class MyModule(torch.nn.Module): |
| def forward(self, x): |
| return x + x |
| |
| exported_program = export(MyModule(), (torch.rand(2, 3),), {}) |
| with self.assertRaisesRegex( |
| TypeError, "Trying to flatten user inputs with exported input tree spec" |
| ): |
| exported_program(torch.rand(2, 3), torch.rand(2, 3)) |
| |
| def test_export_decomps_simple(self): |
| class M(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.lin = torch.nn.Linear(10, 1) |
| |
| def forward(self, x): |
| return self.lin(x) |
| |
| inp = (torch.randn(5, 10),) |
| m = M() |
| with unittest.mock.patch("torch._export.DECOMP_TABLE", None): |
| ep = export(m, inp) |
| state_dict = ep.state_dict |
| |
| FileCheck().check_count( |
| "torch.ops.aten.t.default", 1, exactly=True |
| ).run(ep.graph_module.code) |
| self.assertTrue(torch.allclose(ep(*inp), m(*inp))) |
| |
| core_aten_ep = ep.run_decompositions() |
| FileCheck().check_count( |
| "torch.ops.aten.permute.default", 1, exactly=True |
| ).run(core_aten_ep.graph_module.code) |
| FileCheck().check_count( |
| "torch.ops.aten.t.default", 0, exactly=True |
| ).run(core_aten_ep.graph_module.code) |
| self.assertTrue(torch.allclose(core_aten_ep(*inp), m(*inp))) |
| self.assertEqual(id(state_dict), id(ep.state_dict)) |
| |
| @testing.expectedFailureNonStrict |
| def test_export_decomps_dynamic(self): |
| class M(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.lin = torch.nn.Linear(10, 1) |
| |
| def forward(self, x): |
| return self.lin(x) |
| |
| inp = (torch.randn(5, 10),) |
| m = M() |
| with unittest.mock.patch("torch._export.DECOMP_TABLE", None): |
| ep = export(m, inp, dynamic_shapes={"x": {0: Dim("batch")}}) |
| |
| core_aten_ep = ep.run_decompositions() |
| |
| input_node = [node for node in core_aten_ep.graph.nodes if node.op == "placeholder"][-1] |
| self.assertTrue(isinstance(input_node.meta["val"].shape[0], torch.SymInt)) |
| |
| FileCheck().check_count( |
| "torch.ops.aten.permute.default", 1, exactly=True |
| ).run(core_aten_ep.graph_module.code) |
| FileCheck().check_count( |
| "torch.ops.aten.t.default", 0, exactly=True |
| ).run(core_aten_ep.graph_module.code) |
| self.assertTrue(torch.allclose(core_aten_ep(*inp), m(*inp))) |
| |
| @testing.expectedFailureNonStrict |
| def test_nonzero_2(self): |
| def f(x): |
| return torch.nonzero(x) |
| ep = export(f, (torch.ones(2),)) |
| inp = torch.randn(2) |
| self.assertTrue(torch.allclose(ep(inp), torch.nonzero(inp))) |
| |
| @testing.expectedFailureNonStrict |
| def test_redundant_asserts(self): |
| def f(x): |
| y = x.item() |
| torch._constrain_as_size(y) |
| return torch.zeros(y) |
| |
| ep = export(f, (torch.tensor([3]),)) |
| self.assertExpectedInline(str(ep.graph_module.code).strip(), """\ |
| def forward(self, l_x_): |
| _local_scalar_dense = torch.ops.aten._local_scalar_dense.default(l_x_); l_x_ = None |
| ge = _local_scalar_dense >= 0 |
| scalar_tensor = torch.ops.aten.scalar_tensor.default(ge); ge = None |
| _assert_async = torch.ops.aten._assert_async.msg(scalar_tensor, '_local_scalar_dense is outside of inline constraint [0, inf].'); scalar_tensor = None |
| sym_constrain_range_for_size = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense) |
| zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None |
| return (zeros,)""") |
| |
| def test_non_arg_name_dynamic_shapes_api(self): |
| def foo(a, b): |
| return a.sum() + b.sum() |
| |
| dim = torch.export.Dim("dim") |
| ep = torch.export.export(foo, (torch.randn(4, 4), torch.randn(4, 4)), dynamic_shapes=(None, {0: dim})) |
| |
| test_inp = (torch.randn(4, 4), torch.randn(7, 4)) |
| self.assertEqual(ep(*test_inp), foo(*test_inp)) |
| |
| ep_v2 = torch.export.export(foo, (torch.randn(4, 4), torch.randn(4, 4)), dynamic_shapes=(None, None)) |
| with self.assertRaisesRegex(RuntimeError, "shape\[0\] is specialized at 4"): |
| ep_v2(*test_inp) |
| |
| def test_constant_output(self): |
| class ModuleConstant(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.b = torch.randn(3, 2) |
| |
| def forward(self): |
| return self.b |
| |
| class ModuleNestedConstant(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.bff = torch.randn(3, 2) |
| |
| def forward(self, x, y): |
| return {"prediction": (x + y, self.bff)} |
| |
| mod = ModuleConstant() |
| ep = torch.export.export(mod, ()) |
| self.assertEqual(ep(), mod()) |
| |
| args = (torch.randn(3, 2), torch.randn(3, 2)) |
| mod = ModuleNestedConstant() |
| ep = torch.export.export(mod, args) |
| self.assertEqual(ep(*args), mod(*args)) |
| |
| def test_non_arg_name_dynamic_shapes_api_with_kwarg(self): |
| def foo(a, b, kw1, kw2): |
| return a.sum() + b.sum() + kw1.sum() - kw2.sum() |
| |
| dim = torch.export.Dim("dim") |
| dim_for_kw1 = torch.export.Dim("dim_for_kw1") |
| ep = torch.export.export( |
| foo, |
| (torch.randn(4, 4), torch.randn(4, 4)), |
| {"kw2": torch.ones(4, 4), "kw1": torch.zeros(4, 4)}, |
| # We are specifying dynamism on the first kwarg even though user passed in |
| # different order |
| dynamic_shapes=(None, {0: dim}, {0: dim_for_kw1}, None)) |
| |
| test_inp = (torch.randn(4, 4), torch.randn(7, 4)) |
| test_kwargs = {"kw2": torch.ones(4, 4), "kw1": torch.zeros(9, 4)} |
| # This should work even if the kwarg order are flipped. |
| self.assertEqual(ep(*test_inp, **test_kwargs), foo(*test_inp, **test_kwargs)) |
| |
| def test_non_arg_name_dynamic_shapes_api_with_container_type(self): |
| def foo(a, b): |
| return a[0].sum() + a[1].sum() + b.sum() |
| |
| inp_a = (torch.randn(4, 4), torch.randn(4, 4)) |
| inp_b = torch.randn(4, 4) |
| inp = (inp_a, inp_b) |
| |
| count = 0 |
| def dynamify_inp(x): |
| # Mark the second input a[1] dynamic |
| nonlocal count |
| if count == 1: |
| dim = torch.export.Dim("dim", min=3) |
| count += 1 |
| return {0: dim} |
| count += 1 |
| return None |
| |
| dynamic_shapes = tree_map(dynamify_inp, inp) |
| |
| ep = torch.export.export(foo, inp, dynamic_shapes=dynamic_shapes) |
| |
| test_inp = ((torch.randn(4, 4), torch.randn(2, 4)), torch.randn(4, 4)) |
| with self.assertRaisesRegex( |
| RuntimeError, |
| "shape\[0\] is outside of specified dynamic range \[3, inf\]" |
| ): |
| ep(*test_inp) |
| |
| def test_lazy_module_kwargs(self): |
| class LazyModule(torch.nn.modules.lazy.LazyModuleMixin, torch.nn.Module): |
| def initialize_parameters(self, *args, **kwargs): |
| pass |
| |
| def forward(self, x, y): |
| return x + y |
| |
| m = LazyModule() |
| ep = torch.export.export(m, (), {'x': torch.randn(3, 3), 'y': torch.randn(3, 3)}) |
| inputs = {'x': torch.randn(3, 3), 'y': torch.randn(3, 3)} |
| self.assertEqual(ep(**inputs), m(**inputs)) |
| |
| def test_retrace_pre_autograd(self): |
| class Foo(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.register_buffer("buffer", torch.ones(4, 4)) |
| |
| def forward(self, x): |
| self.buffer.add_(4) |
| return x.sum() + self.buffer.sum() |
| |
| inp = torch.randn(4, 4) |
| gm = capture_pre_autograd_graph(Foo(), (inp,), constraints=[dynamic_dim(inp, 0) >= 3]) |
| |
| with self.assertRaisesRegex(RuntimeError, "Input arg0_1"): |
| gm(torch.randn(2, 2)) |
| |
| with self.assertRaisesRegex(RuntimeError, "Input arg0_1"): |
| torch.export.export(gm, (torch.randn(2, 2),)) |
| |
| ep = torch.export.export(gm, (torch.randn(5, 4),), dynamic_shapes=({0: torch.export.Dim("dim", min=3)},)) |
| |
| test_inp = torch.ones(8, 4) |
| # This is actually correct because how make_fx modifies the buffer since |
| # there is no functionalization. |
| self.assertTrue(torch.allclose(ep(test_inp), Foo().forward(test_inp) + 4*4*4)) |
| |
| @testing.expectedFailureNonStrict |
| def test_issue_113041(self): |
| class TestModule(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.a = torch.tensor(1.0) |
| |
| def forward(self, x: torch.Tensor) -> torch.Tensor: |
| return x + self.a |
| |
| def forward_hook( |
| module: torch.nn.Module, inputs, output |
| ) -> torch.Tensor: |
| return 2 * output |
| |
| seq = torch.nn.Sequential(TestModule()).eval() |
| seq.b = torch.tensor(2) |
| handle = seq.register_forward_hook(forward_hook) |
| |
| class M(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.seq = seq |
| |
| def forward(self, x): |
| return self.seq(x) + self.seq.b |
| |
| inp = (torch.randn(2, 8),) |
| ep = export(M(), inp) # This errors because dynamo adds an extra input |
| |
| def test_export_with_fake_tensor_inputs(self): |
| fake_mode = torch._subclasses.fake_tensor.FakeTensorMode() |
| |
| class Model(torch.nn.Module): |
| def __init__(self) -> None: |
| super().__init__() |
| self.linear = torch.nn.Linear(2, 2) |
| |
| def forward(self, x): |
| out = self.linear(x) |
| return out |
| |
| # Put the inputs on a device |
| with fake_mode, torch.device('meta'): |
| x = torch.rand(5, 2, 2) |
| model = Model() |
| |
| exported_program = torch.export.export(model, (x,)) |
| export_res = exported_program(x) |
| exp_res = model(x) |
| all_meta_val = [node.meta["val"] for node in exported_program.graph_module.graph.nodes if 'val' in node.meta] |
| self.assertTrue(export_res.size() == exp_res.size()) |
| self.assertTrue(all(val.device == x.device for val in all_meta_val)) |
| self.assertTrue(all(val.fake_mode is all_meta_val[0].fake_mode for val in all_meta_val)) |
| decomposed_ep = exported_program.run_decompositions() |
| export_res = decomposed_ep(x) |
| self.assertTrue(export_res.size() == exp_res.size()) |
| |
| def test_export_with_fake_tensor_inputs_on_cuda_devices(self): |
| fake_mode = torch._subclasses.fake_tensor.FakeTensorMode() |
| |
| class Model(torch.nn.Module): |
| def __init__(self) -> None: |
| super().__init__() |
| self.linear = torch.nn.Linear(2, 2) |
| |
| def forward(self, x): |
| out = self.linear(x) |
| return out |
| |
| # Put the inputs on a device |
| with fake_mode, torch.device('meta'): |
| x = torch.rand(5, 2, 2) |
| model = Model() |
| |
| # Manualy set the fake_device of fake tensors. |
| x.fake_device = torch.device('cuda:0') |
| for n, p in model.named_parameters(): |
| p.fake_device = torch.device('cuda:0') |
| |
| # Need to set all the requires_grad of tensors to False, because fake_tensor with CUDA device |
| # doesn't quite work well with aot_autograd right now due to some logic fails |
| # the check in call getDeviceGuardImpl in InputMetadata. |
| x.requires_grad = False |
| for n, p in model.named_parameters(): |
| p.requires_grad = False |
| |
| |
| def check_device_and_fake_mode(): |
| exported_program = torch.export.export(model, (x,)) |
| export_res = exported_program(x) |
| exp_res = model(x) |
| all_meta_val = [node.meta["val"] for node in exported_program.graph_module.graph.nodes if 'val' in node.meta] |
| self.assertTrue(export_res.size() == exp_res.size()) |
| self.assertTrue(all(val.device == x.device for val in all_meta_val)) |
| self.assertTrue(all(val.fake_mode is all_meta_val[0].fake_mode for val in all_meta_val)) |
| |
| check_device_and_fake_mode() |
| |
| |
| def test_export_graph_with_no_inputs(self): |
| # We saw this pattern when users want to export |
| # a graph that initlizes the states of a model. |
| def f(): |
| return torch.randn(3, 4), torch.randn(3, 4) |
| |
| ep = torch.export.export(f, ()) |
| a, b = ep() |
| self.assertEqual(a.size(), torch.Size([3, 4])) |
| self.assertEqual(b.size(), torch.Size([3, 4])) |
| |
| def test_export_then_compile_tensor_ctor(self): |
| class M(torch.nn.Module): |
| def __init__(self,): |
| super().__init__() |
| |
| def forward(self, scores, mask): |
| scores = scores.masked_fill( |
| mask, torch.tensor(torch.finfo(scores.dtype).min) |
| ) # (bs, n_heads, q_length, k_length) |
| return scores |
| |
| tensor_cpu = torch.randn(2, 4) |
| mask_cpu = torch.BoolTensor( |
| [[False, True, False, False], |
| [False, False, False, False]] |
| ) |
| |
| m = M().eval() |
| # res_ref = m(tensor_cpu, mask_cpu) |
| # print("res_ref is: {}".format(res_ref), flush=True) |
| |
| exported_model = capture_pre_autograd_graph( |
| m, |
| (tensor_cpu, mask_cpu), |
| ) |
| optimized_model = torch.compile(exported_model) |
| optimized_model(tensor_cpu, mask_cpu) |
| |
| def test_export_mkldnn_disabled(self): |
| class M(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.lstm = torch.nn.LSTM(input_size=4, hidden_size=5, num_layers=1) |
| |
| def forward(self, inputs: torch.Tensor) -> torch.Tensor: |
| return self.lstm(inputs) |
| |
| inp = (torch.ones(3, 4),) |
| torch._C._set_mkldnn_enabled(False) |
| ep = torch.export.export(M(), inp) |
| FileCheck().check_count( |
| "torch.ops.aten.mkldnn_rnn_layer.default", 0, exactly=True |
| ).run(ep.graph_module.code) |
| |
| torch._C._set_mkldnn_enabled(True) |
| ep = torch.export.export(M(), inp) |
| FileCheck().check_count( |
| "torch.ops.aten.mkldnn_rnn_layer.default", 1, exactly=True |
| ).run(ep.graph_module.code) |
| |
| def test_export_input_mutation_static_shape(self): |
| class MutationModel(torch.nn.Module): |
| def forward(self, x, y): |
| x.view(3, 2, -1).add_(y) |
| return x |
| inputs = (torch.randn(12), 2.0) |
| model = MutationModel() |
| ep = torch.export.export(model, inputs) |
| inputs_export = copy.deepcopy(inputs) |
| inputs_model = copy.deepcopy(inputs) |
| self.assertEqual(ep(*inputs_export), model(*inputs_model)) |
| self.assertEqual(inputs[0] + 2.0, inputs_model[0]) |
| self.assertEqual(inputs[0] + 2.0, inputs_export[0]) |
| |
| def test_export_input_mutation_dynamic_shape(self): |
| class MutationModel(torch.nn.Module): |
| def forward(self, x, y): |
| x[0].mul_(y) |
| return x |
| inputs = ((torch.randn(12), torch.randn(3, 2)), 2.0) |
| model = MutationModel() |
| ep = torch.export.export( |
| model, |
| inputs, |
| dynamic_shapes={'x': ({0: torch.export.Dim("dim")}, None), "y": None} |
| ) |
| nodes = list(ep.graph.nodes) |
| self.assertEqual(nodes[0].op, "placeholder") |
| self.assertIsInstance(nodes[0].meta['val'], torch.Tensor) |
| self.assertIsInstance(nodes[0].meta['val'].shape[0], torch.SymInt) |
| |
| inputs_export = copy.deepcopy(inputs) |
| inputs_model = copy.deepcopy(inputs) |
| self.assertEqual(ep(*inputs_export), model(*inputs_model)) |
| self.assertEqual(inputs[0][0] * 2.0, inputs_model[0][0]) |
| self.assertEqual(inputs[0][0] * 2.0, inputs_export[0][0]) |
| |
| def test_check_specialized_int(self): |
| class SingleOp(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.op = torch.ops.aten.scatter_add |
| |
| def forward(self, t, dim, index, src, **kwargs): |
| return self.op(t, dim, index, src, **kwargs) |
| |
| |
| t = torch.randn(10, 5) |
| dim = -1 |
| index = torch.tensor([[2, 4, 3, 1, 0],[0, 2, 1, 4, 3],[3, 1, 4, 2, 0],[4, 0, 3, 1, 2],[3, 0, 4, 1, 2]]) |
| src = torch.randn(5, 5) |
| |
| model = SingleOp() |
| output = model(t, dim, index, src) |
| |
| ep = torch.export.export(model, args=(t, dim, index, src)) |
| ep.run_decompositions(decomp_table=torch._decomp.decomposition_table) |
| self.assertEqual(ep(t, dim, index, src), output) |
| |
| def test_fqn(self): |
| class NestedChild(torch.nn.Module): |
| def forward(self, x): |
| return x / x |
| |
| class Child1(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.nested = NestedChild() |
| self.register_parameter( |
| "child1param", torch.nn.Parameter(torch.ones(2, 3)) |
| ) |
| |
| def forward(self, x): |
| x = self.nested(x) |
| return x + self.child1param |
| |
| class Child2(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.register_buffer("child2buffer", torch.ones(2, 3)) |
| |
| def forward(self, x): |
| return x - self.child2buffer |
| |
| class MyModule(torch.nn.Module): |
| def __init__(self): |
| super().__init__() |
| self.foo = Child1() |
| self.bar = Child2() |
| self.register_parameter( |
| "rootparam", torch.nn.Parameter(torch.ones(2, 3)) |
| ) |
| |
| def forward(self, x): |
| x = x * self.rootparam |
| x = self.foo(x) |
| x = self.bar(x) |
| return x |
| |
| orig_eager = MyModule() |
| test_inp = torch.randn(2, 3) |
| |
| torch_gm = _export_to_torch_ir(orig_eager, (torch.rand(2, 3),), {}) |
| for k, v in orig_eager.state_dict().items(): |
| normalized_k = k.replace(".", "_") |
| self.assertIn(normalized_k, torch_gm.state_dict()) |
| self.assertEqual(v, torch_gm.state_dict()[normalized_k]) |
| self.assertTrue(torch.allclose(torch_gm(test_inp), orig_eager(test_inp))) |
| |
| pre_autograd_gm = capture_pre_autograd_graph(orig_eager, (torch.rand(2, 3),), {}) |
| for k, v in orig_eager.state_dict().items(): |
| normalized_k = k.replace(".", "_") |
| self.assertIn(normalized_k, pre_autograd_gm.state_dict()) |
| self.assertEqual(v, pre_autograd_gm.state_dict()[normalized_k]) |
| self.assertTrue(torch.allclose(pre_autograd_gm(test_inp), orig_eager(test_inp))) |
| |
| ep = export(orig_eager, (torch.rand(2, 3),), {}) |
| for k, v in orig_eager.state_dict().items(): |
| # We do not need to normalize the key here because exported |
| # program's state dict is able to contain the module information. |
| self.assertIn(k, ep.state_dict) |
| self.assertEqual(v, ep.state_dict[k]) |
| self.assertTrue(torch.allclose(ep(test_inp), orig_eager(test_inp))) |
| |
| |
| if __name__ == '__main__': |
| run_tests() |