| """ |
| The torch.onnx module contains functions to export models into the ONNX |
| IR format. These models can be loaded with the ONNX library and then |
| converted to models which run on other deep learning frameworks. |
| """ |
| |
| import torch |
| import torch.jit |
| import torch.autograd |
| import torch.serialization |
| import re |
| import collections |
| from ._utils import _range |
| |
| |
| def export(model, args, f, export_params=True, kwargs=None, verbose=False): |
| """ |
| Export a model into ONNX format. This exporter runs your model |
| once in order to get a trace of its execution to be exported; at the |
| moment, it does not support dynamic models (e.g., RNNs.) |
| |
| See also: :ref:`onnx-export` |
| |
| Arguments: |
| model (torch.nn.Module): the model to be exported. |
| args (torch.autograd.Variable or tuple of variables): the inputs to |
| the model, e.g., such that ``model(*args, **kwargs)`` is a valid |
| invocation of the model (see kwargs below). |
| f: a file-like object (has to implement fileno that returns a file descriptor) |
| or a string containing a file name. A binary Protobuf will be written |
| to this file. |
| export_params (bool, default True): if specified, all parameters will |
| be exported. Set this to False if you are exporting an |
| untrained model. |
| kwargs (dict, optional): keyword inputs to the model. |
| """ |
| _export(model, args, f, export_params, kwargs, verbose) |
| |
| |
| def _export(model, args, f, export_params=True, kwargs=None, verbose=False): |
| # Special case for common case of passing a single Variable |
| if isinstance(args, torch.autograd.Variable): |
| args = (args, ) |
| if not kwargs: |
| kwargs = {} |
| trace, torch_out = torch.jit.record_trace(model, *args, **kwargs) |
| # TODO: Don't allocate a in-memory string for the protobuf |
| if export_params: |
| # NB: OrderedDict values is not actually a list, but trace.export is |
| # not duck-typed and expects an actual list. |
| proto = trace.export(list(model.state_dict().values()), verbose) |
| else: |
| proto = trace.export(verbose) |
| torch.serialization._with_file_like(f, "wb", lambda f: f.write(proto)) |
| return torch_out |
| |
| |
| attr_pattern = re.compile("^(.+)_([ifstg])$") |
| |
| |
| def _add_attribute(node, key, value): |
| """ initializes the right attribute based on type of value """ |
| m = attr_pattern.match(key) |
| if m is None: |
| raise IndexError(( |
| "Invalid attribute specifier '{}' names " + |
| " must be suffixed with type, e.g. 'dim_i' or 'dims_i'").format(key)) |
| name, kind = m.group(1), m.group(2) |
| if isinstance(value, collections.Iterable): |
| kind += "s" |
| return getattr(node, kind + '_')(name, value) |
| |
| |
| def _newNode(self, opname, *args, **kwargs): |
| n = self.create(opname, args) |
| for k, v in sorted(kwargs.items()): |
| _add_attribute(n, k, v) |
| return n |
| |
| |
| def _op(self, opname, *args, **kwargs): |
| outputs = kwargs.pop('outputs', 1) |
| n = self.appendNode(_newNode(self, opname, *args, **kwargs)) |
| if outputs == 1: |
| return n |
| return tuple(self.appendNode(self.createSelect(n, i)) for i in _range(outputs)) |
| |
| torch._C.Graph.op = _op |