| from typing import Optional, Tuple, Union | |
| from torch import Tensor | |
| from .optimizer import Optimizer, ParamsT | |
| class AdamW(Optimizer): | |
| def __init__( | |
| self, | |
| params: ParamsT, | |
| lr: Union[float, Tensor] = 1e-3, | |
| betas: Tuple[float, float] = (0.9, 0.999), | |
| eps: float = 1e-8, | |
| weight_decay: float = 1e-2, | |
| amsgrad: bool = False, | |
| *, | |
| maximize: bool = False, | |
| foreach: Optional[bool] = None, | |
| capturable: bool = False, | |
| differentiable: bool = False, | |
| fused: Optional[bool] = None, | |
| ) -> None: ... |