| import torch |
| from torch.distributions import constraints |
| from torch.distributions.gamma import Gamma |
| from torch.distributions.transformed_distribution import TransformedDistribution |
| from torch.distributions.transforms import PowerTransform |
| |
| |
| __all__ = ["InverseGamma"] |
| |
| |
| class InverseGamma(TransformedDistribution): |
| r""" |
| Creates an inverse gamma distribution parameterized by :attr:`concentration` and :attr:`rate` |
| where:: |
| |
| X ~ Gamma(concentration, rate) |
| Y = 1 / X ~ InverseGamma(concentration, rate) |
| |
| Example:: |
| |
| >>> # xdoctest: +IGNORE_WANT("non-deterinistic") |
| >>> m = InverseGamma(torch.tensor([2.0]), torch.tensor([3.0])) |
| >>> m.sample() |
| tensor([ 1.2953]) |
| |
| Args: |
| concentration (float or Tensor): shape parameter of the distribution |
| (often referred to as alpha) |
| rate (float or Tensor): rate = 1 / scale of the distribution |
| (often referred to as beta) |
| """ |
| arg_constraints = { |
| "concentration": constraints.positive, |
| "rate": constraints.positive, |
| } |
| support = constraints.positive |
| has_rsample = True |
| |
| def __init__(self, concentration, rate, validate_args=None): |
| base_dist = Gamma(concentration, rate, validate_args=validate_args) |
| neg_one = -base_dist.rate.new_ones(()) |
| super().__init__( |
| base_dist, PowerTransform(neg_one), validate_args=validate_args |
| ) |
| |
| def expand(self, batch_shape, _instance=None): |
| new = self._get_checked_instance(InverseGamma, _instance) |
| return super().expand(batch_shape, _instance=new) |
| |
| @property |
| def concentration(self): |
| return self.base_dist.concentration |
| |
| @property |
| def rate(self): |
| return self.base_dist.rate |
| |
| @property |
| def mean(self): |
| result = self.rate / (self.concentration - 1) |
| return torch.where(self.concentration > 1, result, torch.inf) |
| |
| @property |
| def mode(self): |
| return self.rate / (self.concentration + 1) |
| |
| @property |
| def variance(self): |
| result = self.rate.square() / ( |
| (self.concentration - 1).square() * (self.concentration - 2) |
| ) |
| return torch.where(self.concentration > 2, result, torch.inf) |
| |
| def entropy(self): |
| return ( |
| self.concentration |
| + self.rate.log() |
| + self.concentration.lgamma() |
| - (1 + self.concentration) * self.concentration.digamma() |
| ) |