| #include <gtest/gtest.h> |
| |
| #include <torch/nn/modules.h> |
| #include <torch/nn/modules/batchnorm.h> |
| #include <torch/nn/modules/conv.h> |
| #include <torch/nn/modules/dropout.h> |
| #include <torch/nn/modules/linear.h> |
| #include <torch/nn/modules/rnn.h> |
| #include <torch/nn/modules/sequential.h> |
| #include <torch/types.h> |
| #include <torch/utils.h> |
| |
| #include <algorithm> |
| #include <memory> |
| #include <vector> |
| |
| #include <test/cpp/api/support.h> |
| |
| using namespace torch::nn; |
| using namespace torch::test; |
| |
| struct SequentialTest : torch::test::SeedingFixture {}; |
| |
| TEST_F(SequentialTest, ConstructsFromSharedPointer) { |
| struct M : torch::nn::Module { |
| explicit M(int value_) : value(value_) {} |
| int value; |
| int forward() { |
| return value; |
| } |
| }; |
| Sequential sequential( |
| std::make_shared<M>(1), std::make_shared<M>(2), std::make_shared<M>(3)); |
| ASSERT_EQ(sequential->size(), 3); |
| |
| Sequential sequential_named(modules_ordered_dict({ |
| {"m1", std::make_shared<M>(1)}, |
| {std::string("m2"), std::make_shared<M>(2)}, |
| {"m3", std::make_shared<M>(3)} |
| })); |
| ASSERT_EQ(sequential->size(), 3); |
| } |
| |
| TEST_F(SequentialTest, ConstructsFromConcreteType) { |
| static int copy_count; |
| |
| struct M : torch::nn::Module { |
| explicit M(int value_) : value(value_) {} |
| M(const M& other) : torch::nn::Module(other) { |
| copy_count++; |
| } |
| int value; |
| int forward() { |
| return value; |
| } |
| }; |
| |
| copy_count = 0; |
| Sequential sequential(M(1), M(2), M(3)); |
| ASSERT_EQ(sequential->size(), 3); |
| // NOTE: The current implementation expects each module to be copied exactly once, |
| // which happens when the module is passed into `std::make_shared<T>()`. |
| // TODO: Find a way to avoid copying, and then delete the copy constructor of `M`. |
| ASSERT_EQ(copy_count, 3); |
| |
| copy_count = 0; |
| Sequential sequential_named(modules_ordered_dict({ |
| {"m1", M(1)}, |
| {std::string("m2"), M(2)}, |
| {"m3", M(3)} |
| })); |
| ASSERT_EQ(sequential->size(), 3); |
| ASSERT_EQ(copy_count, 3); |
| } |
| |
| TEST_F(SequentialTest, ConstructsFromModuleHolder) { |
| struct MImpl : torch::nn::Module { |
| explicit MImpl(int value_) : value(value_) {} |
| int forward() { |
| return value; |
| } |
| int value; |
| }; |
| |
| struct M : torch::nn::ModuleHolder<MImpl> { |
| using torch::nn::ModuleHolder<MImpl>::ModuleHolder; |
| using torch::nn::ModuleHolder<MImpl>::get; |
| }; |
| |
| Sequential sequential(M(1), M(2), M(3)); |
| ASSERT_EQ(sequential->size(), 3); |
| |
| Sequential sequential_named(modules_ordered_dict({ |
| {"m1", M(1)}, |
| {std::string("m2"), M(2)}, |
| {"m3", M(3)} |
| })); |
| ASSERT_EQ(sequential->size(), 3); |
| } |
| |
| TEST_F(SequentialTest, PushBackAddsAnElement) { |
| struct M : torch::nn::Module { |
| explicit M(int value_) : value(value_) {} |
| int forward() { |
| return value; |
| } |
| int value; |
| }; |
| |
| // Test unnamed submodules |
| Sequential sequential; |
| ASSERT_EQ(sequential->size(), 0); |
| ASSERT_TRUE(sequential->is_empty()); |
| sequential->push_back(Linear(3, 4)); |
| ASSERT_EQ(sequential->size(), 1); |
| sequential->push_back(std::make_shared<M>(1)); |
| ASSERT_EQ(sequential->size(), 2); |
| sequential->push_back(M(2)); |
| ASSERT_EQ(sequential->size(), 3); |
| |
| // Mix named and unnamed submodules |
| Sequential sequential_named; |
| ASSERT_EQ(sequential_named->size(), 0); |
| ASSERT_TRUE(sequential_named->is_empty()); |
| |
| sequential_named->push_back(Linear(3, 4)); |
| ASSERT_EQ(sequential_named->size(), 1); |
| ASSERT_EQ(sequential_named->named_children()[0].key(), "0"); |
| sequential_named->push_back(std::string("linear2"), Linear(3, 4)); |
| ASSERT_EQ(sequential_named->size(), 2); |
| ASSERT_EQ(sequential_named->named_children()[1].key(), "linear2"); |
| |
| sequential_named->push_back("shared_m1", std::make_shared<M>(1)); |
| ASSERT_EQ(sequential_named->size(), 3); |
| ASSERT_EQ(sequential_named->named_children()[2].key(), "shared_m1"); |
| sequential_named->push_back(std::make_shared<M>(1)); |
| ASSERT_EQ(sequential_named->size(), 4); |
| ASSERT_EQ(sequential_named->named_children()[3].key(), "3"); |
| |
| sequential_named->push_back(M(1)); |
| ASSERT_EQ(sequential_named->size(), 5); |
| ASSERT_EQ(sequential_named->named_children()[4].key(), "4"); |
| sequential_named->push_back(std::string("m2"), M(1)); |
| ASSERT_EQ(sequential_named->size(), 6); |
| ASSERT_EQ(sequential_named->named_children()[5].key(), "m2"); |
| } |
| |
| TEST_F(SequentialTest, AccessWithAt) { |
| struct M : torch::nn::Module { |
| explicit M(int value_) : value(value_) {} |
| int forward() { |
| return value; |
| } |
| int value; |
| }; |
| std::vector<std::shared_ptr<M>> modules = { |
| std::make_shared<M>(1), std::make_shared<M>(2), std::make_shared<M>(3)}; |
| |
| Sequential sequential; |
| for (auto& module : modules) { |
| sequential->push_back(module); |
| } |
| ASSERT_EQ(sequential->size(), 3); |
| |
| // returns the correct module for a given index |
| for (size_t i = 0; i < modules.size(); ++i) { |
| ASSERT_EQ(&sequential->at<M>(i), modules[i].get()); |
| } |
| |
| // throws for a bad index |
| ASSERT_THROWS_WITH( |
| sequential->at<M>(modules.size() + 1), "Index out of range"); |
| ASSERT_THROWS_WITH( |
| sequential->at<M>(modules.size() + 1000000), "Index out of range"); |
| } |
| |
| TEST_F(SequentialTest, AccessWithPtr) { |
| struct M : torch::nn::Module { |
| explicit M(int value_) : value(value_) {} |
| int forward() { |
| return value; |
| } |
| int value; |
| }; |
| std::vector<std::shared_ptr<M>> modules = { |
| std::make_shared<M>(1), std::make_shared<M>(2), std::make_shared<M>(3)}; |
| |
| Sequential sequential; |
| for (auto& module : modules) { |
| sequential->push_back(module); |
| } |
| ASSERT_EQ(sequential->size(), 3); |
| |
| // returns the correct module for a given index |
| for (size_t i = 0; i < modules.size(); ++i) { |
| ASSERT_EQ(sequential->ptr(i).get(), modules[i].get()); |
| ASSERT_EQ(sequential[i].get(), modules[i].get()); |
| ASSERT_EQ(sequential->ptr<M>(i).get(), modules[i].get()); |
| } |
| |
| // throws for a bad index |
| ASSERT_THROWS_WITH(sequential->ptr(modules.size() + 1), "Index out of range"); |
| ASSERT_THROWS_WITH( |
| sequential->ptr(modules.size() + 1000000), "Index out of range"); |
| } |
| |
| TEST_F(SequentialTest, CallingForwardOnEmptySequentialIsDisallowed) { |
| Sequential empty; |
| ASSERT_THROWS_WITH( |
| empty->forward<int>(), "Cannot call forward() on an empty Sequential"); |
| } |
| |
| TEST_F(SequentialTest, CallingForwardChainsCorrectly) { |
| struct MockModule : torch::nn::Module { |
| explicit MockModule(int value) : expected(value) {} |
| int expected; |
| int forward(int value) { |
| assert(value == expected); |
| return value + 1; |
| } |
| }; |
| |
| Sequential sequential(MockModule{1}, MockModule{2}, MockModule{3}); |
| |
| ASSERT_EQ(sequential->forward<int>(1), 4); |
| } |
| |
| TEST_F(SequentialTest, CallingForwardWithTheWrongReturnTypeThrows) { |
| struct M : public torch::nn::Module { |
| int forward() { |
| return 5; |
| } |
| }; |
| |
| Sequential sequential(M{}); |
| ASSERT_EQ(sequential->forward<int>(), 5); |
| ASSERT_THROWS_WITH( |
| sequential->forward<float>(), |
| "The type of the return value is int, but you asked for type float"); |
| } |
| |
| TEST_F(SequentialTest, TheReturnTypeOfForwardDefaultsToTensor) { |
| struct M : public torch::nn::Module { |
| torch::Tensor forward(torch::Tensor v) { |
| return v; |
| } |
| }; |
| |
| Sequential sequential(M{}); |
| auto variable = torch::ones({3, 3}, torch::requires_grad()); |
| ASSERT_TRUE(sequential->forward(variable).equal(variable)); |
| } |
| |
| TEST_F(SequentialTest, ForwardReturnsTheLastValue) { |
| torch::manual_seed(0); |
| Sequential sequential(Linear(10, 3), Linear(3, 5), Linear(5, 100)); |
| |
| auto x = torch::randn({1000, 10}, torch::requires_grad()); |
| auto y = sequential->forward(x); |
| ASSERT_EQ(y.ndimension(), 2); |
| ASSERT_EQ(y.size(0), 1000); |
| ASSERT_EQ(y.size(1), 100); |
| } |
| |
| TEST_F(SequentialTest, SanityCheckForHoldingStandardModules) { |
| Sequential sequential( |
| Linear(10, 3), |
| Conv2d(1, 2, 3), |
| Dropout(0.5), |
| BatchNorm(5), |
| Embedding(4, 10), |
| LSTM(4, 5)); |
| } |
| |
| TEST_F(SequentialTest, ExtendPushesModulesFromOtherSequential) { |
| struct A : torch::nn::Module { |
| int forward(int x) { |
| return x; |
| } |
| }; |
| struct B : torch::nn::Module { |
| int forward(int x) { |
| return x; |
| } |
| }; |
| struct C : torch::nn::Module { |
| int forward(int x) { |
| return x; |
| } |
| }; |
| struct D : torch::nn::Module { |
| int forward(int x) { |
| return x; |
| } |
| }; |
| Sequential a(A{}, B{}); |
| Sequential b(C{}, D{}); |
| a->extend(*b); |
| |
| ASSERT_EQ(a->size(), 4); |
| ASSERT_TRUE(a[0]->as<A>()); |
| ASSERT_TRUE(a[1]->as<B>()); |
| ASSERT_TRUE(a[2]->as<C>()); |
| ASSERT_TRUE(a[3]->as<D>()); |
| |
| ASSERT_EQ(b->size(), 2); |
| ASSERT_TRUE(b[0]->as<C>()); |
| ASSERT_TRUE(b[1]->as<D>()); |
| |
| std::vector<std::shared_ptr<A>> c = {std::make_shared<A>(), |
| std::make_shared<A>()}; |
| b->extend(c); |
| |
| ASSERT_EQ(b->size(), 4); |
| ASSERT_TRUE(b[0]->as<C>()); |
| ASSERT_TRUE(b[1]->as<D>()); |
| ASSERT_TRUE(b[2]->as<A>()); |
| ASSERT_TRUE(b[3]->as<A>()); |
| } |
| |
| TEST_F(SequentialTest, HasReferenceSemantics) { |
| Sequential first(Linear(2, 3), Linear(4, 4), Linear(4, 5)); |
| Sequential second(first); |
| |
| ASSERT_EQ(first.get(), second.get()); |
| ASSERT_EQ(first->size(), second->size()); |
| ASSERT_TRUE(std::equal( |
| first->begin(), |
| first->end(), |
| second->begin(), |
| [](const AnyModule& first, const AnyModule& second) { |
| return &first == &second; |
| })); |
| } |
| |
| TEST_F(SequentialTest, IsCloneable) { |
| Sequential sequential(Linear(3, 4), Functional(torch::relu), BatchNorm(3)); |
| Sequential clone = |
| std::dynamic_pointer_cast<SequentialImpl>(sequential->clone()); |
| ASSERT_EQ(sequential->size(), clone->size()); |
| |
| for (size_t i = 0; i < sequential->size(); ++i) { |
| // The modules should be the same kind (type). |
| ASSERT_EQ(sequential[i]->name(), clone[i]->name()); |
| // But not pointer-equal (distinct objects). |
| ASSERT_NE(sequential[i], clone[i]); |
| } |
| |
| // Verify that the clone is deep, i.e. parameters of modules are cloned too. |
| |
| torch::NoGradGuard no_grad; |
| |
| auto params1 = sequential->named_parameters(); |
| auto params2 = clone->named_parameters(); |
| ASSERT_EQ(params1.size(), params2.size()); |
| for (auto& param : params1) { |
| ASSERT_FALSE(pointer_equal(param.value(), params2[param.key()])); |
| ASSERT_EQ(param->device(), params2[param.key()].device()); |
| ASSERT_TRUE(param->allclose(params2[param.key()])); |
| param->add_(2); |
| } |
| for (auto& param : params1) { |
| ASSERT_FALSE(param->allclose(params2[param.key()])); |
| } |
| } |
| |
| TEST_F(SequentialTest, RegistersElementsAsSubmodules) { |
| Sequential sequential(Linear(10, 3), Conv2d(1, 2, 3), FeatureDropout(0.5)); |
| |
| auto modules = sequential->children(); |
| ASSERT_TRUE(modules[0]->as<Linear>()); |
| ASSERT_TRUE(modules[1]->as<Conv2d>()); |
| ASSERT_TRUE(modules[2]->as<FeatureDropout>()); |
| } |
| |
| TEST_F(SequentialTest, CloneToDevice_CUDA) { |
| Sequential sequential(Linear(3, 4), Functional(torch::relu), BatchNorm(3)); |
| torch::Device device(torch::kCUDA, 0); |
| Sequential clone = |
| std::dynamic_pointer_cast<SequentialImpl>(sequential->clone(device)); |
| for (const auto& p : clone->parameters()) { |
| ASSERT_EQ(p.device(), device); |
| } |
| for (const auto& b : clone->buffers()) { |
| ASSERT_EQ(b.device(), device); |
| } |
| } |
| |
| TEST_F(SequentialTest, PrettyPrintSequential) { |
| Sequential sequential( |
| Linear(10, 3), |
| Conv2d(1, 2, 3), |
| Dropout(0.5), |
| BatchNorm(5), |
| Embedding(4, 10), |
| LSTM(4, 5)); |
| ASSERT_EQ( |
| c10::str(sequential), |
| "torch::nn::Sequential(\n" |
| " (0): torch::nn::Linear(in=10, out=3, with_bias=true)\n" |
| " (1): torch::nn::Conv2d(input_channels=1, output_channels=2, kernel_size=[3, 3], stride=[1, 1])\n" |
| " (2): torch::nn::Dropout(rate=0.5)\n" |
| " (3): torch::nn::BatchNorm(features=5, eps=1e-05, momentum=0.1, affine=true, stateful=true)\n" |
| " (4): torch::nn::Embedding(count=4, dimension=10)\n" |
| " (5): torch::nn::LSTM(input_size=4, hidden_size=5, layers=1, dropout=0)\n" |
| ")"); |
| |
| Sequential sequential_named(modules_ordered_dict({ |
| {"linear", Linear(10, 3)}, |
| {"conv2d", Conv2d(1, 2, 3)}, |
| {"dropout", Dropout(0.5)}, |
| {"batchnorm", BatchNorm(5)}, |
| {"embedding", Embedding(4, 10)}, |
| {"lstm", LSTM(4, 5)} |
| })); |
| ASSERT_EQ( |
| c10::str(sequential_named), |
| "torch::nn::Sequential(\n" |
| " (linear): torch::nn::Linear(in=10, out=3, with_bias=true)\n" |
| " (conv2d): torch::nn::Conv2d(input_channels=1, output_channels=2, kernel_size=[3, 3], stride=[1, 1])\n" |
| " (dropout): torch::nn::Dropout(rate=0.5)\n" |
| " (batchnorm): torch::nn::BatchNorm(features=5, eps=1e-05, momentum=0.1, affine=true, stateful=true)\n" |
| " (embedding): torch::nn::Embedding(count=4, dimension=10)\n" |
| " (lstm): torch::nn::LSTM(input_size=4, hidden_size=5, layers=1, dropout=0)\n" |
| ")"); |
| } |