blob: 591b7a0a24191486a25b333eb762d3d876c03dde [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include "minpybind.h"
#include <frameobject.h>
#include <opcode.h>
#include <utility>
#include <new>
#include <iostream>
#include <vector>
//#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/utils/python_compat.h>
#include <torch/csrc/Export.h>
#include <ATen/functorch/BatchedTensorImpl.h>
#include <ATen/functorch/DynamicLayer.h>
#include <ATen/ATen.h>
#include <memory>
#include "arena.h"
#include "python_variable_simple.h"
#if IS_PYTHON_3_11_PLUS
#define Py_BUILD_CORE
#include "internal/pycore_opcode.h"
#undef Py_BUILD_CORE
#endif
// C++ API functions for objects to
// * construct the object, returning a ref-counted handle
// * The actual API, with methods that take/return C-typed values
// extend minpybind.h to include
// * typed handles so that -> can get to their raw API
// * object/handle distinction for the typed handles
// class Dim: ---------------
py::handle torch_Tensor___mul__;
py::handle _Tensor;
py::handle _Tensor_sum;
py::handle NamedTuple;
py::dict_view pointwise;
py::handle torch_Tensor_expand;
binaryfunc THPVariable_getitem;
objobjargproc THPVariable_setitem;
py::handle no_slice;
PyTypeObject* torch_Tensor;
py::handle torch_Tensor_copy_;
py::handle torch_Tensor_split;
bool pointwise_optimize = true;
PyTypeObject* DimType = nullptr;
static void maybeInitializeGlobals() {
// globals that depend on the python dim library,
// which we can't lookup until we finish initializing the _C module
if (_Tensor.ptr()) {
return;
}
auto dim = py::import("functorch.dim");
_Tensor = dim.attr("_Tensor");
pointwise = dim.attr("pointwise");
_Tensor_sum = _Tensor.attr("sum");
DimType = (PyTypeObject*) py::import("functorch.dim").attr("Dim").ptr();
}
PyObject* Tensor_getitem(PyObject* self, PyObject* index);
int Tensor_setitem(PyObject* self, PyObject* index, PyObject* value);
void replaceMappingIfMatches(py::handle tp) {
auto T = (PyTypeObject*) tp.ptr();
bool recurse = false;
if (T->tp_as_mapping->mp_subscript == THPVariable_getitem) {
T->tp_as_mapping->mp_subscript = Tensor_getitem;
recurse = true;
}
if (T->tp_as_mapping->mp_ass_subscript == THPVariable_setitem) {
T->tp_as_mapping->mp_ass_subscript = Tensor_setitem;
recurse = true;
}
if (recurse) {
auto result = tp.attr("__subclasses__").call();
py::list_view lv(result);
for (auto i : lv.enumerate()) {
replaceMappingIfMatches(lv[i]);
}
}
}
static void initializeGlobals(Arena & A) {
auto torch = py::import("torch");
torch_Tensor = (PyTypeObject*) torch.attr("Tensor").ptr();
torch_Tensor___mul__ = torch.attr("Tensor").attr("__mul__");
torch_Tensor_expand = torch.attr("_C").attr("_TensorBase").attr("expand");
torch_Tensor_split = torch.attr("_C").attr("_TensorBase").attr("split");
torch_Tensor_copy_ = torch.attr("Tensor").attr("copy_");
auto py_TensorBase = torch.attr("_C").attr("_TensorBase");
auto TensorBase = (PyTypeObject*) py_TensorBase.ptr();
THPVariable_getitem = TensorBase->tp_as_mapping->mp_subscript;
THPVariable_setitem = TensorBase->tp_as_mapping->mp_ass_subscript;
NamedTuple = py::import("typing").attr("NamedTuple");
no_slice = PySlice_New(NULL, NULL, NULL);
}
py::handle DimensionBindError_;
static py::handle DimensionBindError() {
if(!DimensionBindError_.ptr()) {
DimensionBindError_ = py::import("functorch.dim").attr("DimensionBindError");
}
return DimensionBindError_;
}
static int64_t n_dims_created = 65;
struct Dim : public py::base<Dim> {
int64_t level_; // for stable comparisons in prototype
py::object name_;
Dim()
: level_(n_dims_created++) {}
void init(py::object name, int64_t s = -1) {
name_ = std::move(name);
size_ = s;
}
static bool check_exact(py::handle v) {
return Py_TYPE(v.ptr()) == DimType;
}
int64_t size() const {
if (size_ == -1) {
py::raise_error(PyExc_ValueError, "dimension %S is unbound", name_.ptr());
}
return size_;
}
void set_size(int64_t v) {
if (size_ == -1) {
size_ = v;
} else if(size_ != v) {
py::raise_error(DimensionBindError(), "Dim '%R' previously bound to a dimension of size %lld cannot bind to a dimension of size %lld", this, this->size_, v);
}
}
bool is_bound() const {
return size_ != -1;
}
static py::obj<Dim> create(py::object name, int64_t s = -1) {
if (!DimType) {
maybeInitializeGlobals();
}
auto r = Dim::alloc(DimType);
r->init(std::move(name), s);
return r;
}
static PyTypeObject Type;
const at::Tensor& range() {
if (!range_.defined()) {
range_ = at::arange(size());
}
return range_;
}
const at::Tensor& batchtensor() {
if (!batchtensor_.defined()) {
batchtensor_ = at::functorch::addBatchDim(range(), 0, level_);
}
return batchtensor_;
}
private:
int64_t size_{-1};
at::Tensor range_;
at::Tensor batchtensor_;
};
struct DimEntry {
// union of either a negative number indicating which dimension this is from the rhs,
// or a pointer to a first-class dimension.
// pointers do not have their highest bit set, so checking the number is negative tells us
// that it is not a dim.
bool is_positional() const {
return data_ < 0;
}
bool is_none() const {
return data_ == 0;
}
int64_t position() const {
return data_;
}
py::hdl<Dim> dim() const {
Dim* result;
std::memcpy(&result, &data_, sizeof(Dim*));
return py::hdl<Dim>(result);
}
DimEntry()
: data_(0) {}
DimEntry(int64_t pos)
: data_(pos) {
AT_ASSERT(pos < 0);
}
DimEntry(py::hdl<Dim> d) {
std::memcpy(&data_, &d, sizeof(int64_t));
}
bool operator==(const DimEntry& rhs) const {
return data_ == rhs.data_;
}
private:
int64_t data_;
};
std::ostream& operator<<(std::ostream& ss, DimEntry entry) {
if (entry.is_none()) {
ss << "None";
} else if (entry.is_positional()) {
ss << entry.position();
} else {
ss << entry.dim();
}
return ss;
}
// Dim wrapper methods
static int Dim_init(py::hdl<Dim> self, PyObject *args, PyObject *kwds) {
PY_BEGIN
static constexpr const char* kwlist[] = {"name", "size", nullptr};
py::handle name;
py::handle size = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|O", const_cast<char **>(kwlist), &name, &size)) {
return -1;
}
self->init(py::object::borrow(name), (size.ptr() && !py::is_none(size)) ? py::to_int(size) : -1);
return 0;
PY_END(-1)
}
static PyObject* Dim_repr(Dim* self) {
PY_BEGIN
py::object name = (self->name_.ptr()) ? self->name_ : py::unicode_from_string("<uninitialized dim>");
return name.release();
PY_END(nullptr)
}
static PyObject* Dim_getsize(Dim* self, void*) {
PY_BEGIN
return py::from_int(self->size()).release();
PY_END(nullptr)
}
int Dim_setsize(Dim* self, PyObject* size, void*) {
PY_BEGIN
self->set_size(py::to_int(size));
return 0;
PY_END(-1)
}
static PyObject* Dim_getis_bound(Dim* self, void*) {
return PyBool_FromLong(self->is_bound());
}
static PyObject* Dim_getlevel(Dim* self, void*) {
return PyLong_FromLong(self->level_);
}
static PyObject* Dim_get_levels(Dim* self, void*) {
py::tuple t(1);
t.set(0, py::object::borrow(self->ptr()));
return t.release();
}
static PyObject* Dim_get_has_device(Dim* self, void*) {
Py_RETURN_FALSE;
}
static PyObject* Dim_get_tensor(Dim* self, void*) {
return THPVariable_Wrap(self->range());
}
static PyObject* Dim_get_batchtensor(Dim* self, void*) {
return THPVariable_Wrap(self->batchtensor());
}
static PyGetSetDef Dim_getsetters[] = {
{"size", (getter) Dim_getsize, (setter) Dim_setsize,
"Dimension size", NULL},
{"is_bound", (getter) Dim_getis_bound, NULL, "is_bound", NULL},
{"_level", (getter) Dim_getlevel, NULL, "_level", NULL},
{"_levels", (getter) Dim_get_levels, NULL, "_levels", NULL},
{"_has_device", (getter) Dim_get_has_device, NULL, "_has_device", NULL},
{"_tensor", (getter) Dim_get_tensor, NULL, "_tensor", NULL},
{"_batchtensor", (getter) Dim_get_batchtensor, NULL, "_batchtensor", NULL},
{"ndim", (getter) [](PyObject* self, void*) -> PyObject* { return py::from_int(1).release(); }, NULL, "ndim", NULL},
{NULL} /* Sentinel */
};
PyTypeObject Dim::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"_C.Dim", /* tp_name */
sizeof(Dim), /* tp_basicsize */
0, /* tp_itemsize */
Dim::dealloc_stub, /* tp_dealloc */
0, /* tp_vectorcall_offset */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
(reprfunc)Dim_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
"Dim Object", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
Dim_getsetters, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)(void*) Dim_init, /* tp_init */
0, /* tp_alloc */
Dim::new_stub, /* tp_new */
};
// class DimList ------------
struct DimList : public py::base<DimList> {
py::object name_;
std::vector<py::obj<Dim>> dims_;
static PyTypeObject Type;
void init(py::object name) {
name_ = std::move(name);
}
void set_dims(std::vector<py::obj<Dim>> dims) {
bound_ = true;
dims_ = std::move(dims);
}
bool is_bound() {
return bound_;
}
void bind_len(int64_t size) {
if (bound_) {
int64_t b_size = dims_.size();
if (b_size != size) {
py::raise_error(DimensionBindError(), "Dimlist has size %lld but it is being bound to size %d", b_size, size);
}
} else {
bound_ = true;
dims_.resize(size);
for (Py_ssize_t i = 0; i < size; ++i) {
dims_[i] = Dim::create(py::unicode_from_format("%S%i", name_.ptr(), (int)i));
}
}
}
int64_t size() const {
if (!bound_) {
py::raise_error(DimensionBindError(), "DimList not bound");
}
return dims_.size();
}
void set_bound(bool b) {
bound_ = b;
}
private:
bool bound_ = false;
};
static int DimList_init(DimList *self, PyObject *args, PyObject *kwds);
static PyObject* DimList_repr(DimList* self) {
PY_BEGIN
if (self->is_bound()) {
size_t size = self->dims_.size();
py::tuple t(size);
for(size_t i = 0; i < size; ++i) {
t.set(i, self->dims_[i]);
}
return py::repr(t).release();
} else if(!py::is_none(self->name_)) {
return py::unicode_from_format("*%S", self->name_.ptr()).release();
} else {
return py::unicode_from_string("<unbound_dimlist>").release();
}
PY_END(nullptr)
}
static PyObject* DimList_bind(DimList *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
PY_BEGIN
py::handle sizes;
static const char * const _keywords[] = {"sizes", nullptr};
static _PyArg_Parser parser = {"O", _keywords, 0};
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &parser, &sizes)) {
return nullptr;
}
if (!py::is_sequence(sizes)) {
py::raise_error(PyExc_ValueError, "expected a sequence");
}
py::sequence_view seq = sizes;
auto size = seq.size();
self->bind_len(size);
for (Py_ssize_t i = 0; i < size; ++i) {
self->dims_[i]->set_size(py::to_int(seq[i]));
}
Py_RETURN_NONE;
PY_END(nullptr)
}
static PyObject* DimList_bind_len(DimList *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
PY_BEGIN
int size;
static const char * const _keywords[] = {"N", nullptr};
static _PyArg_Parser parser = {"i", _keywords, 0};
if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &parser, &size)) {
return nullptr;
}
self->bind_len(size);
Py_RETURN_NONE;
PY_END(nullptr)
}
static PyMethodDef DimList_methods[] = {
{"bind", (PyCFunction)(void*) DimList_bind, METH_FASTCALL | METH_KEYWORDS},
{"bind_len", (PyCFunction)(void*) DimList_bind_len, METH_FASTCALL | METH_KEYWORDS},
{NULL, NULL, 0, NULL} /* Sentinel */
};
static Py_ssize_t DimList_len(DimList* self) {
PY_BEGIN
return self->size();
PY_END(-1)
}
PyObject * DimList_item(DimList* self, Py_ssize_t idx) {
PY_BEGIN
if (!self->is_bound()) {
py::raise_error(DimensionBindError(), "DimList not bound");
}
if (idx < 0 || (size_t) idx >= self->dims_.size()) {
py::raise_error(PyExc_IndexError, "index out of bounds");
}
py::object r = self->dims_[idx];
return r.release();
PY_END(nullptr)
}
PySequenceMethods DimList_seq {
(lenfunc) DimList_len, //lenfunc sq_length;
0, //binaryfunc sq_concat;
0, //ssizeargfunc sq_repeat;
(ssizeargfunc) DimList_item, //ssizeargfunc sq_item;
0, //void *was_sq_slice;
0, //ssizeobjargproc sq_ass_item;
0, //void *was_sq_ass_slice;
0, //objobjproc sq_contains;
0, //binaryfunc sq_inplace_concat;
0, //ssizeargfunc sq_inplace_repeat;
};
static PyObject* DimList_getis_bound(DimList* self, void*) {
return PyBool_FromLong(self->is_bound());
}
static PyGetSetDef DimList_getsetters[] = {
{"is_bound", (getter) DimList_getis_bound, NULL, "is_bound", NULL},
{NULL} /* Sentinel */
};
static PyObject* DimList_subscript(DimList* self, py::handle idx) {
PY_BEGIN
if (py::is_int(idx)) {
return DimList_item(self, py::to_int(idx));
} else if (py::is_slice(idx)) {
if (!self->is_bound()) {
py::raise_error(DimensionBindError(), "DimList not bound");
}
py::slice_view s(idx, self->dims_.size());
py::tuple r(s.slicelength);
for (Py_ssize_t i = s.start, j = 0; i < s.stop; i += s.step) {
r.set(j++, self->dims_[i]);
}
return r.release();
} else {
py::raise_error(PyExc_ValueError, "expected an int or a slice");
return nullptr;
}
PY_END(nullptr)
}
PyMappingMethods DimList_mapping = {
0, //lenfunc mp_length;
(binaryfunc)(void*) DimList_subscript, //binaryfunc mp_subscript;
0, //objobjargproc mp_ass_subscript;
};
PyTypeObject DimList::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"_C.DimList", /* tp_name */
sizeof(DimList), /* tp_basicsize */
0, /* tp_itemsize */
DimList::dealloc_stub, /* tp_dealloc */
0, /* tp_vectorcall_offset */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
(reprfunc)DimList_repr, /* tp_repr */
0, /* tp_as_number */
&DimList_seq, /* tp_as_sequence */
&DimList_mapping, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
0, /* tp_flags */
"DimList Object", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
DimList_methods, /* tp_methods */
0, /* tp_members */
DimList_getsetters, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc) DimList_init, /* tp_init */
0, /* tp_alloc */
DimList::new_stub, /* tp_new */
};
static int DimList_init(DimList *self, PyObject *args, PyObject *kwds) {
PY_BEGIN
static constexpr const char* kwlist[] = {"len_or_dims", "name", nullptr};
py::handle len_or_dims = nullptr;
PyObject* name = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO", const_cast<char**>(kwlist), &len_or_dims, &name)) {
return -1;
}
self->init(py::object::borrow(name ? name : Py_None));
if (len_or_dims.ptr()) {
if(py::is_int(len_or_dims)) {
self->bind_len(py::to_int(len_or_dims));
} else if (py::is_sequence(len_or_dims)) {
py::sequence_view s(len_or_dims);
std::vector<py::obj<Dim>> dims;
size_t size = s.size();
dims.reserve(size);
for (size_t i = 0; i < size; ++i) {
auto r = s[i];
if (py::is_int(r)) {
dims.emplace_back(Dim::create(py::unicode_from_format("%S%i", self->name_.ptr(), (int)i), py::to_int(r)));
} else {
dims.emplace_back(Dim::wrap(r));
}
}
self->set_dims(std::move(dims));
} else {
PyErr_Format(PyExc_ValueError, "expected a length or a sequence of dimensions");
return -1;
}
return 0;
}
return 0;
PY_END(-1);
}
// Tensor -----------------------------
PyTypeObject* TensorType = nullptr; // the python wrapper type.
at::Tensor _add_batch_dims(Arena& A, at::Tensor t, Slice<DimEntry> levels_);
static py::object run_torch_function(Arena &A, py::handle orig, py::vector_args args, bool is_pointwise);
void free_levels_dims(Slice<DimEntry> levels);
struct Tensor;
struct DelayedOperator {
DelayedOperator(py::object o, py::vector_args a)
: orig(std::move(o)), args(a) {
auto all = a.size();
// this will outlive the call so
// take ownership of temporaries
// in vector args
auto buf = new py::handle[all];
memcpy(buf, args.args, sizeof(py::handle)*all);
args.args = buf;
for (auto i : args.enumerate_all()) {
Py_INCREF(args.args[i].ptr());
}
Py_XINCREF(args.kwnames.ptr());
}
~DelayedOperator() {
for (auto i : args.enumerate_all()) {
Py_DECREF(args[i].ptr());
}
if (args.has_keywords()) {
Py_XDECREF(args.kwnames.ptr());
}
delete [] args.args;
}
py::object orig;
py::vector_args args;
};
struct Tensor : public py::base<Tensor> {
private:
at::Tensor tensor_;
at::Tensor batchtensor_;
OwnedSlice<DimEntry> levels_;
bool has_device_;
std::unique_ptr<DelayedOperator> delayed_;
public:
at::Tensor& tensor(Arena& A) {
if (C10_UNLIKELY(!tensor_.defined())) {
AT_ASSERT(delayed_);
auto t = Tensor::wrap(run_torch_function(A, delayed_->orig, delayed_->args, true));
tensor_ = t->tensor(A);
delayed_.reset();
// don't force creation of batch tensor if it wasn't alreay provided.
batchtensor_ = t->batchtensor_;
AT_ASSERT(levels() == t->levels());
}
return tensor_;
}
at::Tensor& batchtensor(Arena& A) {
if (C10_UNLIKELY(!batchtensor_.defined())) {
batchtensor_ = _add_batch_dims(A, tensor(A), levels_.slice());
}
return batchtensor_;
}
Slice<DimEntry> levels() {
return levels_.slice();
}
bool has_device() {
return has_device_;
}
DelayedOperator* delayed() {
return delayed_.get();
}
static PyTypeObject Type;
static bool check_exact(py::handle v) {
return Py_TYPE(v.ptr()) == TensorType;
}
static py::obj<Tensor> create() {
if (!TensorType) {
TensorType = (PyTypeObject*) py::import("functorch.dim").attr("Tensor").ptr();
}
return Tensor::alloc(TensorType);
}
void capture_levels(Slice<DimEntry> levels) {
// grab ownership of the dims inside levels
for (auto l : levels) {
if (!l.is_positional()) {
py::object::borrow(l.dim()).release();
}
}
levels_.set(levels, free_levels_dims);
}
static py::object from_positional(Arena & A, at::Tensor tensor, Slice<DimEntry> levels, bool has_device);
static py::obj<Tensor> create_delayed(py::object op, py::vector_args args, Slice<DimEntry> levels, bool has_device);
friend struct EnableAllLayers;
};
at::Tensor _add_batch_dims(Arena& A, at::Tensor t, Slice<DimEntry> levels_) {
auto levels = Slice<DimEntry>();
levels.extend(A, levels_);
while (true) {
int64_t min_real_index = -1;
int64_t min_index = -1;
int64_t min_value = INT_MAX;
int64_t i = 0;
int64_t r = 0;
for (auto l : levels) {
if (!l.is_none()) {
if (!l.is_positional() && l.dim()->level_ < min_value) {
min_value = l.dim()->level_;
min_index = i;
min_real_index = r;
}
++i;
}
++r;
}
if (min_index == -1) {
return t;
}
auto t2 = at::functorch::addBatchDim(std::move(t), min_index, min_value);
t = std::move(t2);
levels[min_real_index] = DimEntry();
}
}
void free_levels_dims(Slice<DimEntry> levels) {
for(auto e : levels) {
if (!e.is_positional()) {
py::object::steal(e.dim());
}
}
}
// version in header does a unnecessary refcount +/-
inline at::functorch::BatchedTensorImpl* maybeGetBatchedImpl(const at::Tensor& tensor) {
if (at::functorch::isBatchedTensor(tensor)) {
return static_cast<at::functorch::BatchedTensorImpl*>(tensor.unsafeGetTensorImpl());
}
return nullptr;
}
inline TensorRef unchecked_tensor_from(py::handle p) {
auto v = (THPVariable*) p.ptr();
return TensorRef(*v->cdata);
}
int64_t ndim_of_levels(Slice<DimEntry> levels) {
int64_t r = 0;
for (auto l : levels) {
if (l.is_positional()) {
++r;
}
}
return r;
}
struct TensorInfo {
TensorRef tensor;
Slice<DimEntry> levels;
bool has_device;
TensorRef batchedtensor;
int64_t ndim() const {
return ndim_of_levels(levels);
}
operator bool() const {
return tensor;
}
static TensorInfo create(Arena& A, py::handle h, bool ensure_batched=true, bool ensure_present=true) {
if (Tensor::check_exact(h)) {
auto t = Tensor::unchecked_wrap(h);
return TensorInfo {t->tensor(A), t->levels(), t->has_device(), ensure_batched ? t->batchtensor(A) : TensorRef()};
} else if (Dim::check_exact(h)) {
auto d = Dim::unchecked_wrap(h);
return TensorInfo {d->range(), Slice<DimEntry>(A, DimEntry(d)), false, ensure_batched ? d->batchtensor() : TensorRef()};
} else if (THPVariable_Check(h.ptr())) {
TensorRef t = unchecked_tensor_from(h);
Slice<DimEntry> levels;
for (auto i : irange(-t->dim(), 0)) {
levels.append(A, i);
}
return TensorInfo {t, levels, true, t};
} else {
if (ensure_present) {
py::raise_error(PyExc_ValueError, "expected a tensor object");
}
return TensorInfo {};
}
}
};
py::object Tensor::from_positional(Arena & A, at::Tensor tensor, Slice<DimEntry> levels, bool has_device) {
size_t seen_dims = 0;
int last = 0;
//auto sz = tensor.sizes();
for (auto i : levels.enumerate()) {
auto l = levels[i];
if (l.is_positional()) {
AT_ASSERT(last == 0 || last + 1 == l.position());
last = l.position();
} else {
py::object::borrow(l.dim()).release();
//AT_ASSERT(sz[i] == l.dim()->size());
++seen_dims;
}
}
AT_ASSERT(last == 0 || last == -1);
if (!seen_dims) {
return py::object::steal(THPVariable_Wrap(std::move(tensor)));
}
py::obj<Tensor> self = Tensor::create();
self->tensor_ = std::move(tensor);
AT_ASSERT(self->tensor_.dim() == levels.size());
self->levels_.set(levels, free_levels_dims);
self->has_device_ = has_device;
py::object r = std::move(self);
return r;
}
static PyObject* py_Tensor_from_positional(PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
Arena A;
PY_BEGIN
#define ARGS(_) _(py::handle, tensor) _(py::handle, py_levels) _(int, has_device)
MPY_PARSE_ARGS_KWNAMES("OOp", ARGS)
#undef ARGS
if (!THPVariable_Check(tensor.ptr())) {
py::raise_error(PyExc_ValueError, "_tensor is not a Tensor?");
}
Slice<DimEntry> levels;
py::sequence_view sq(py_levels);
for (auto i : sq.enumerate()) {
py::object v = sq[i];
if (py::is_int(v)) {
auto vi = py::to_int(v);
levels.append(A, vi);
} else {
auto dim = Dim::wrap(std::move(v));
py::hdl<Dim> hdim = dim;
levels.append(A, hdim);
}
}
return Tensor::from_positional(A, THPVariable_Unpack(tensor.ptr()), levels, has_device != 0).release();
PY_END(nullptr)
}
py::obj<Tensor> Tensor::create_delayed(py::object op, py::vector_args args, Slice<DimEntry> levels, bool has_device) {
py::obj<Tensor> self = Tensor::create();
self->capture_levels(levels);
self->has_device_ = has_device;
self->delayed_ = std::make_unique<DelayedOperator>(op, args);
return self;
}
py::list slice_to_list(Slice<py::handle> h) {
py::list lst(h.size());
for (auto i : h.enumerate()) {
lst.set(i, py::object::borrow(h[i]));
}
return lst;
}
py::tuple slice_to_tuple(Slice<py::handle> h) {
py::tuple lst(h.size());
for (auto i : h.enumerate()) {
lst.set(i, py::object::borrow(h[i]));
}
return lst;
}
enum UType {
U_ELEM,
U_TUPLE_LIKE,
U_DICT,
};
struct Unflatten {
py::object operator()(Slice<py::handle>& elements) {
py::object r;
switch (type) {
case U_ELEM: {
r = py::object::borrow(elements[0]);
elements = elements.slice(1);
} break;
case U_TUPLE_LIKE: {
py::tuple tup(children.size());
for (auto i : children.enumerate()) {
tup.set(i, children[i](elements));
}
r = obj.call(tup);
} break;
case U_DICT: {
r = py::object::checked_steal(PyDict_New());
py::dict_view rv(r);
py::dict_view d(obj);
Py_ssize_t pos = 0;
py::handle k, v;
for (int i = 0; d.next(&pos, &k, &v); ++i) {
rv.set(k, children[i](elements));
}
} break;
}
return r;
}
UType type;
py::handle obj;
Slice<Unflatten> children;
};
Unflatten tree_flatten(Arena& A, py::handle agg, Slice<py::handle>& flat_elements) {
Slice<Unflatten> c;
UType utype;
py::handle obj;
if (py::list_view::check(agg)) {
obj = agg.type();
utype = U_TUPLE_LIKE;
py::list_view l(agg);
for (auto i : l.enumerate()) {
c.append(A, tree_flatten(A, l[i], flat_elements));
}
} else if (py::tuple_view::check(agg)) {
obj = agg.type();
utype = U_TUPLE_LIKE;
// includes named tuples
py::tuple_view l(agg);
for (auto i : l.enumerate()) {
c.append(A, tree_flatten(A, l[i], flat_elements));
}
} else if (py::dict_view::check(agg)) {
utype = U_DICT;
py::dict_view d(agg);
obj = agg;
Py_ssize_t pos = 0;
py::handle k, v;
while (d.next(&pos, &k, &v)) {
c.append(A, tree_flatten(A, v, flat_elements));
}
} else {
utype = U_ELEM;
flat_elements.append(A, agg);
}
return Unflatten {utype, obj, c};
}
struct UnflattenVectorArgs {
py::vector_args operator()(Arena& A, Slice<py::handle>& elements) {
if (!had_nested) {
auto args = elements.begin();
elements = Slice<py::handle>();
return py::vector_args(args, nargs, kwnames);
}
Slice<py::handle> args;
for (auto u : children) {
args.append(A, A.autorelease(u(elements)));
}
return py::vector_args(args.begin(), nargs, kwnames);
}
Slice<Unflatten> children;
Py_ssize_t nargs;
py::handle kwnames;
bool had_nested;
};
UnflattenVectorArgs tree_flatten(Arena& A, py::vector_args args, Slice<py::handle>& flat_elements) {
UnflattenVectorArgs r;
r.kwnames = args.kwnames;
r.nargs = args.nargs;
r.had_nested = false;
auto N = args.size();
for(auto i : irange(N)) {
auto typ = Py_TYPE(args[i].ptr());
// fast checks that this thing isn't something that is nested.
bool is_element = !typ->tp_as_sequence || typ == torch_Tensor || typ == TensorType || typ == DimType;
if (!is_element) {
flat_elements.extend(A, args.args, args.args + i);
for (auto j : irange(i)) {
(void)j;
r.children.append(A, Unflatten {U_ELEM});
}
for (auto j : irange(i, N)) {
r.children.append(A, tree_flatten(A, args[j], flat_elements));
if (r.children.back().type != U_ELEM) {
r.had_nested = true;
}
}
return r;
}
}
flat_elements.extend(A, args.args, args.args + N);
return r;
}
struct UnflattenArena {
Arena A;
Unflatten unflatten;
};
static PyObject* py_unflatten(PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
PY_BEGIN
#define ARGS(_) _(py::handle, ns)
MPY_PARSE_ARGS_KWNAMES("O", ARGS)
#undef ARGS
py::sequence_view sv(ns);
// because we do not have a autorelase pool yet...
Arena A;
Slice<py::handle> slice;
py::handle Tuple = (PyObject*) &PyTuple_Type;
auto inputs = Tuple.call(ns);
py::tuple_view tv(inputs);
for (auto i : tv.enumerate()) {
slice.append(A, tv[i]);
}
auto AA = (UnflattenArena*) PyCapsule_GetPointer(self, "arena");
auto r = AA->unflatten(slice).release();
AT_ASSERT(r != nullptr);
return r;
PY_END(nullptr)
}
PyMethodDef py_unflatten_def = {"unflatten", (PyCFunction)(void*) py_unflatten, METH_FASTCALL | METH_KEYWORDS};
void free_unflatten_arena(PyObject * pc) {
delete (UnflattenArena*) PyCapsule_GetPointer(pc, "arena");
}
static PyObject* py_tree_flatten(PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
PY_BEGIN
#define ARGS(_) _(py::handle, tree)
MPY_PARSE_ARGS_KWNAMES("O", ARGS)
#undef ARGS
auto A = new UnflattenArena;
Slice<py::handle> elements;
A->unflatten = tree_flatten(A->A, tree, elements);
auto cap = py::object::checked_steal(PyCapsule_New(A, "arena", free_unflatten_arena));
auto unflatten = py::object::checked_steal(PyCFunction_New(&py_unflatten_def, cap.release()));
py::tuple r(2);
r.set(0, slice_to_list(elements));
r.set(1, std::move(unflatten));
return r.release();
PY_END(nullptr)
}
py::object tree_map(Arena& A, std::function<py::handle(py::handle)> fn, py::handle agg) {
Slice<py::handle> elements;
auto unflatten = tree_flatten(A, agg, elements);
for (auto i : elements.enumerate()) {
elements[i] = fn(elements[i]);
}
return unflatten(elements);
}
// prereq: isinstance(h, _Tensor)
inline int64_t _Tensor_ndim(py::handle h) {
if (Tensor::check(h)) {
int64_t r = 0;
for (auto l : Tensor::unchecked_wrap(h)->levels()) {
if (l.is_positional()) {
++r;
}
}
return r;
}
// Dim or DelayedMulTensor
return 0;
}
inline py::handle handle_from_tensor(Arena& A, TensorRef t) {
// fast case: tensor is live in python
c10::optional<PyObject*> mb_obj =
t->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(getPyInterpreter());
if (mb_obj.has_value() && !t->unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()) {
return *mb_obj;
}
return A.autorelease(py::object::checked_steal(THPVariable_Wrap(*t)));
}
struct EnableAllLayers {
EnableAllLayers(Arena& A, Slice<DimEntry> levels) {
std::vector<std::pair<int64_t, int64_t>> layers;
layers.reserve(levels.size());
for (auto l : levels) {
if (!l.is_positional()) {
auto d = l.dim();
levels_to_dim_.append(A, d);
}
}
std::sort(levels_to_dim_.begin(), levels_to_dim_.end(), [](py::hdl<Dim> lhs, py::hdl<Dim> rhs) { return lhs->level_ < rhs->level_;});
for (auto i : levels_to_dim_.enumerate()) {
auto batch_size = levels_to_dim_[i]->size();
auto level = at::functorch::initAndPushDynamicLayer(at::functorch::TransformType::Vmap, batch_size, at::functorch::RandomnessType::Different);
if (i == 0) {
levels_start_ = level;
}
}
}
~EnableAllLayers() {
auto to_remove = levels_start_ + levels_to_dim_.size() - 1;
for (auto i : levels_to_dim_.enumerate()) {
AT_ASSERT(at::functorch::popDynamicLayerAndDeleteMetadata().layerId() == to_remove - i);
}
}
py::obj<Tensor> from_batched(Arena& A, at::Tensor batchedtensor, bool has_device) {
Slice<DimEntry> levels;
for (auto i : irange(-batchedtensor.dim(), 0)) {
levels.append(A, i);
}
TensorRef tensor;
at::functorch::BatchedTensorImpl * impl = maybeGetBatchedImpl(batchedtensor);
while(true) {
auto level = impl->level();
AT_ASSERT(level >= levels_start_ && level < levels_start_ + levels_to_dim_.size());
py::hdl<Dim> dim = levels_to_dim_[level - levels_start_].ptr();
levels.insert(A, impl->bdim(), dim);
at::functorch::BatchedTensorImpl * nimpl = maybeGetBatchedImpl(impl->value());
if (!nimpl) {
tensor = impl->value();
break;
}
impl = nimpl;
}
py::obj<Tensor> self = Tensor::create();
// grab ownership of the tensors
self->tensor_ = *tensor;
self->batchtensor_ = std::move(batchedtensor);
self->has_device_ = has_device;
self->capture_levels(levels);
return self;
}
void inplace_update_layers(TensorRef batchtensor, Slice<DimEntry> levels) {
// XXX - requires a patch to functorch to att set_level
auto impl = maybeGetBatchedImpl(*batchtensor);
for (auto i : levels_to_dim_.reversed_enumerate()) {
if (!impl) {
break;
}
if (levels.contains(levels_to_dim_[i])) {
impl->_unsafe_set_level(levels_start_ + i);
impl = maybeGetBatchedImpl(impl->value());
}
}
}
private:
int64_t levels_start_{};
Slice<py::hdl<Dim>> levels_to_dim_;
};
TensorRef _match_levels(Arena& A, TensorRef v, Slice<DimEntry> from_levels, Slice<DimEntry> to_levels, bool drop_levels=false) {
if (from_levels == to_levels) {
return v;
}
// drop_levels -> if a dim appears in from_levels but not to_levels, it is assumed it has stride 0.
at::IntArrayRef sz = v->sizes();
at::IntArrayRef sd = v->strides();
AT_ASSERT(drop_levels || from_levels.size() <= to_levels.size());
Slice<int64_t> nsz;
Slice<int64_t> nsd;
for (auto l : to_levels) {
auto oidx = from_levels.index(l);
if (!oidx) {
nsz.append(A, l.is_positional() ? 1 : l.dim()->size());
nsd.append(A, 0);
} else {
auto idx = *oidx;
nsz.append(A, sz[idx]);
nsd.append(A, sd[idx]);
}
}
return A.autorelease(v->as_strided(at::IntArrayRef(nsz.begin(), nsz.end()), at::IntArrayRef(nsd.begin(), nsd.end()), v->storage_offset()));
}
static py::object run_torch_function(Arena &A, py::handle orig, py::vector_args args, bool is_pointwise) {
if (!pointwise_optimize) {
is_pointwise = false;
}
// std::cout << "__torch_function__ " << ((is_pointwise) ? "pointwise" : "functorch") << " " << orig << "\n";
Slice<py::hdl<Dim>> all_dims;
Slice<py::handle> flat_args;
auto unflatten_args = tree_flatten(A, args, flat_args);
TensorRef device_holding_tensor;
Slice<TensorInfo> infos;
Slice<DimEntry> result_levels;
for (auto f : flat_args) {
infos.append(A, TensorInfo::create(A, f, !is_pointwise, false));
if (infos.back()) {
TensorInfo& info = infos.back();
AT_ASSERT(is_pointwise || info.batchedtensor);
if (!device_holding_tensor && info.has_device) {
device_holding_tensor = infos.back().tensor;
}
for (auto l : info.levels) {
if (!result_levels.contains(l)) {
result_levels.append(A, l);
}
}
}
}
if (is_pointwise) {
for (auto i : flat_args.enumerate()) {
if (infos[i]) {
TensorRef tensor = infos[i].tensor;
if (device_holding_tensor && !infos[i].has_device) {
tensor = A.autorelease(tensor->to(device_holding_tensor->device()));
}
auto ml = _match_levels(A, tensor, infos[i].levels, result_levels);
flat_args[i] = handle_from_tensor(A, std::move(ml));
}
}
Slice<py::handle> flat_it = flat_args;
py::vector_args uargs = unflatten_args(A, flat_it);
py::object result = orig.call_vector(uargs);
// fast wrap for normal case where operator just returns a tensor.
if (THPVariable_Check(result.ptr())) {
return Tensor::from_positional(A, THPVariable_Unpack(result.ptr()), result_levels, device_holding_tensor);
}
auto wrap = [&](py::handle h) {
if (THPVariable_Check(h.ptr())){
return A.autorelease(Tensor::from_positional(A, THPVariable_Unpack(h.ptr()), result_levels, device_holding_tensor));
}
return h;
};
return tree_map(A, wrap, result);
} else {
// std::cout << orig << " calling functorch...\n";
// std::cout << "rl: " << result_levels << "\n";
EnableAllLayers guard(A, result_levels);
for (auto i : flat_args.enumerate()) {
if (infos[i]) {
TensorRef batched = infos[i].batchedtensor;
if (device_holding_tensor && !infos[i].has_device) {
batched = A.autorelease(batched->to(device_holding_tensor->device()));
}
guard.inplace_update_layers(batched, infos[i].levels);
flat_args[i] = handle_from_tensor(A, batched);
}
}
Slice<py::handle> flat_it = flat_args;
py::vector_args uargs = unflatten_args(A, flat_it);
AT_ASSERT(flat_it.size() == 0);
py::object result = orig.call_vector(uargs);
auto wrap = [&](py::handle h) {
if (THPVariable_Check(h.ptr())) {
return A.autorelease(guard.from_batched(A, THPVariable_Unpack(h.ptr()), device_holding_tensor));
}
return h;
};
if (THPVariable_Check(result.ptr())) {
return guard.from_batched(A, THPVariable_Unpack(result.ptr()), device_holding_tensor);
}
return tree_map(A, wrap, result);
}
}
static py::object __torch_function__(Arena &A, py::handle orig, py::vector_args args, bool is_pointwise) {
if (orig == torch_Tensor___mul__) {
AT_ASSERT(args.nargs == 2 && !args.has_keywords());
auto lhs = args[0];
auto rhs = args[1];
if (py::isinstance(lhs, _Tensor) && py::isinstance(rhs, _Tensor) && _Tensor_ndim(lhs) == 0 && _Tensor_ndim(rhs) == 0) {
bool has_device = false;
Slice<DimEntry> levels;
for (auto i : args.enumerate_positional()) {
auto t = TensorInfo::create(A, args[i], false);
// something like a mask * rhs, which matrix multiplies don't correctly promote
if (!t.tensor->is_floating_point()) {
return run_torch_function(A, orig, args, is_pointwise);
}
has_device = has_device || t.has_device;
for (auto l : t.levels) {
if (!levels.contains(l)) {
levels.append(A, l);
}
}
}
// std::cout << "__torch_function__ " << "delay" << " " << orig << "\n";
return Tensor::create_delayed(py::object::borrow(orig), args, levels, has_device);
}
}
return run_torch_function(A, orig, args, is_pointwise);
}
py::vector_args as_vector_args(Arena& A, py::handle args, py::handle kwargs) {
auto pos_args = (py::handle*) &PyTuple_GET_ITEM(args.ptr(), 0);
auto pos_n = PyTuple_GET_SIZE(args.ptr());
if (!kwargs.ptr()) {
return py::vector_args(pos_args, pos_n, nullptr);
}
Slice<py::handle> all_args;
Slice<py::handle> kwnames;
all_args.extend(A, pos_args, pos_args + pos_n);
py::dict_view dv(kwargs);
Py_ssize_t pos = 0;
py::handle key, value;
while (dv.next(&pos, &key, &value)) {
all_args.append(A, value);
kwnames.append(A, key);
}
return py::vector_args(all_args.begin(), pos_n, A.autorelease(slice_to_tuple(kwnames)));
}
static PyObject* py___torch_function__(PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
Arena A;
PY_BEGIN
maybeInitializeGlobals();
AT_ASSERT(nargs == 4 || nargs == 5);
auto va = as_vector_args(A, args[3], nargs == 5 ? args[4] : nullptr);
bool is_pointwise = pointwise.contains(args[1]);
return __torch_function__(A, args[1], std::move(va), is_pointwise).release();
PY_END(nullptr)
}
py::object levels_to_tuple(Slice<DimEntry> slice) {
py::tuple t(slice.size());
for (auto i : slice.enumerate()) {
t.set(i, slice[i].is_positional() ? py::from_int(slice[i].position()) : py::object::borrow(slice[i].dim()));
}
py::object r = std::move(t);
return r;
}
PyObject* Tensor_ndim(Tensor* self, void*) {
Py_ssize_t i = 0;
for (auto l : self->levels()) {
if (l.is_positional()) {
++i;
}
}
return py::from_int(i).release();
}
static PyGetSetDef Tensor_getsetters[] = {
{"_has_device", (getter) [](PyObject* self, void*) -> PyObject* { return py::from_bool(((Tensor*)self)->has_device()).release(); }, NULL},
{"_tensor", (getter) [](PyObject* self, void*) -> PyObject* {
Arena A;
return THPVariable_Wrap(((Tensor*)self)->tensor(A)); }, NULL},
{"_batchtensor", (getter) [](PyObject* self, void*) -> PyObject* {
Arena A;
return THPVariable_Wrap(((Tensor*)self)->batchtensor(A)); }, NULL},
{"_levels", (getter) [](PyObject* self, void*) -> PyObject* {
PY_BEGIN
return levels_to_tuple(((Tensor*)self)->levels()).release();
PY_END(nullptr)
}},
{"ndim", (getter) Tensor_ndim, NULL, "ndim", NULL},
{NULL} /* Sentinel */
};
static PyMethodDef Tensor_methods[] = {
{NULL, NULL, 0, NULL} /* Sentinel */
};
PyTypeObject Tensor::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"_C.Tensor", /* tp_name */
sizeof(Tensor), /* tp_basicsize */
0, /* tp_itemsize */
Tensor::dealloc_stub, /* tp_dealloc */
0, /* tp_vectorcall_offset */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE , /* tp_flags */
"Tensor Object", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
Tensor_methods, /* tp_methods */
0, /* tp_members */
Tensor_getsetters, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
Tensor::new_stub, /* tp_new */
};
// dim() --------------------
bool relevant_op(_Py_CODEUNIT c) {
switch(c) {
case STORE_NAME:
case STORE_GLOBAL:
case STORE_FAST:
case STORE_DEREF:
return true;
default:
return false;
}
}
py::object create_dim(py::object name, py::handle size) {
auto d = Dim::create(std::move(name));
if (!py::is_none(size)) {
d->set_size(py::to_int(size));
}
return std::move(d);
}
py::object create_dimlist(py::object name, py::handle size) {
auto d = DimList::create(std::move(name));
if (!py::is_none(size)) {
if (py::is_int(size)) {
d->bind_len(py::to_int(size));
} else {
py::sequence_view s(size);
d->bind_len(s.size());
for (auto i : irange(d->size())) {
d->dims_[i]->set_size(py::to_int(s[i]));
}
}
}
return std::move(d);
}
// Python wrappers that make new reflection primitives available for older runtimes
#if !(IS_PYTHON_3_11_PLUS)
#define _PyCode_CODE(CO) ((_Py_CODEUNIT*)PyBytes_AS_STRING((CO)->co_code))
#endif
struct PyInstDecoder {
PyInstDecoder(PyCodeObject* code_object, int lasti)
: code_object_(code_object), code_(_PyCode_CODE(code_object)), offset_(lasti / sizeof(_Py_CODEUNIT)) {}
// On Windows, _PyOpcode_Caches and _PyOpcode_Deopt are private symbols
// See https://github.com/pytorch/pytorch/issues/93854
void next() {
#if IS_PYTHON_3_11_PLUS && !defined(_WIN32)
offset_ += _PyOpcode_Caches[opcode()];
#endif
offset_ += 1;
}
int opcode() {
auto r = _Py_OPCODE(code_[offset_]);
#if IS_PYTHON_3_11_PLUS && !defined(_WIN32)
r = _PyOpcode_Deopt[r];
#endif
return r;
}
int oparg() {
return _Py_OPARG(code_[offset_]);
}
py::object name() {
py::object names;
switch(opcode()) {
case STORE_NAME:
case STORE_GLOBAL:
names = py::object::borrow(code_object_->co_names);
break;
case STORE_FAST:
names = py::object::steal(PyCode_GetVarnames(code_object_));
break;
case STORE_DEREF:
names = py::object::steal(PyCode_GetCellvars(code_object_));
break;
default:
return py::object();
}
return py::object::steal(PySequence_GetItem(names.ptr(), oparg()));
}
private:
PyCodeObject* code_object_;
_Py_CODEUNIT* code_;
int offset_;
};
template<py::object (*create_object)(py::object, py::handle)>
static PyObject* _dims(PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
PY_BEGIN
Py_ssize_t specified_ndims = -1;
Py_ssize_t found_ndims = 0;
Py_ssize_t sizes = -1;
py::handle n = Py_None;
py::handle py_sizes = Py_None;
if (nargs || kwnames) {
py::vector_args va(args, nargs, kwnames);
va.parse("dims", {"n", "sizes"}, {&n, &py_sizes}, 0);
if (!py::is_none(py_sizes)) {
sizes = py::sequence_view(py_sizes).size();
specified_ndims = sizes;
}
if (!py::is_none(n)) {
specified_ndims = py::to_int(n);
}
}
PyThreadState* state = PyThreadState_GET();
auto f = py::obj<PyFrameObject>::steal(PyThreadState_GetFrame(state));
auto c = py::obj<PyCodeObject>::steal(PyFrame_GetCode(f.ptr()));
auto lasti = PyFrame_GetLasti(f.ptr());
auto decoder = PyInstDecoder(c.ptr(), lasti);
#if IS_PYTHON_3_11_PLUS
// When py3.11 adapts bytecode lasti points to the precall
// rather than the call instruction after it
if (decoder.opcode() == PRECALL) {
decoder.next();
}
#endif
decoder.next();
if (relevant_op(decoder.opcode())) {
found_ndims = 1;
} else if (decoder.opcode() == UNPACK_SEQUENCE) {
found_ndims = decoder.oparg();
decoder.next();
}
if (specified_ndims == -1) {
if (found_ndims == 0) {
py::raise_error(PyExc_SyntaxError, "dims() must be assigned to a sequence of variable names or have argument n specified");
}
specified_ndims = found_ndims;
}
if (found_ndims != specified_ndims) {
found_ndims = 0; // avoid taking the wrong names for dimensions
}
auto genobject = [&](int i) -> py::object {
py::object name;
if (i < found_ndims) {
name = decoder.name();
}
if (!name.ptr()) {
name = py::unicode_from_format("d%d", i);
found_ndims = 0; // once we fail at finding a name, we can find any more
} else {
decoder.next();
}
return create_object(std::move(name), sizes != -1 ? py::sequence_view(py_sizes)[i] : py::handle(Py_None));
};
if (sizes != -1 && sizes != specified_ndims) {
py::raise_error(PyExc_ValueError, "expected %d sizes but found %d", int(specified_ndims), int(sizes));
}
if (specified_ndims == 1) {
return genobject(0).release();
}
py::tuple result(specified_ndims);
for (int i = 0; i < specified_ndims; ++i) {
result.set(i, genobject(i));
}
return result.release();
PY_END(nullptr)
}
int64_t dim_index(const std::vector<py::obj<Dim>>& dims, py::hdl<Dim> dim) {
for (int64_t i = 0, N = dims.size(); i < N; ++i) {
if (dims[i].ptr() == dim.ptr()) {
return i;
}
}
return -1;
}
struct DotPart {
Slice<DimEntry> dims;
size_t total_size = 1;
void append(Arena& A, py::hdl<Dim> d) {
total_size *= d->size();
dims.append(A, d);
}
};
template<typename T>
static at::ArrayRef<T> as_array_ref(Slice<T> t) {
return at::ArrayRef<T>(t.begin(), t.end());
}
TensorRef dot_prepare(Arena& A, std::initializer_list<DotPart> parts, const TensorInfo& t) {
Slice<DimEntry> new_levels;
bool needs_reshape = false;
for (auto p : parts) {
if (p.dims.size() != 1) {
needs_reshape = true;
}
new_levels.extend(A, p.dims);
}
auto r = _match_levels(A, t.tensor, t.levels, new_levels, true);
if (!needs_reshape) {
return r;
}
Slice<int64_t> view;
for (auto p : parts) {
view.append(A, p.total_size);
}
return A.autorelease(r->reshape(at::IntArrayRef(view.begin(), view.end())));
}
py::object dot_finish(Arena& A, std::initializer_list<DotPart> parts, at::Tensor r) {
Slice<DimEntry> result_levels;
bool needs_reshape = false;
for (auto p : parts) {
if (p.dims.size() != 1) {
needs_reshape = true;
}
result_levels.extend(A, p.dims);
}
if (needs_reshape) {
Slice<int64_t> new_size;
for (auto l : result_levels) {
new_size.append(A, l.dim()->size());
}
r = r.reshape(at::IntArrayRef(new_size.begin(), new_size.end()));
}
return Tensor::from_positional(A, std::move(r), result_levels, true);
}
py::object dot(Arena& A, TensorInfo lhs, TensorInfo rhs, Slice<DimEntry> sum) {
auto lhs_strides = lhs.tensor->strides();
auto rhs_strides = rhs.tensor->strides();
DotPart lro_dims;
DotPart lo_dims;
DotPart ro_dims;
DotPart lr_dims;
auto insert_dim = [&] (py::hdl<Dim> d, at::optional<int> lhs_idx, at::optional<int> rhs_idx) {
bool reduced = sum.contains(d);
int64_t lhs_stride = lhs_idx ? lhs_strides[*lhs_idx] : 0;
int64_t rhs_stride = rhs_idx ? rhs_strides[*rhs_idx] : 0;
if (reduced) {
// lr
lr_dims.append(A, d);
} else {
if ((lhs_stride == 0) == (rhs_stride == 0)) {
// lro
lro_dims.append(A, d);
} else if (lhs_stride != 0) {
// lo
lo_dims.append(A, d);
} else {
AT_ASSERT(rhs_stride != 0);
ro_dims.append(A, d);
}
}
};
auto rhs_seen = A.allocate<bool>(rhs.levels.size());
std::fill(rhs_seen, rhs_seen + rhs.levels.size(), false);
for (auto i : lhs.levels.enumerate()) {
auto d = lhs.levels[i];
auto rhs_idx = rhs.levels.index(d);
if (rhs_idx) {
rhs_seen[*rhs_idx] = true;
}
insert_dim(d.dim(), i, rhs_idx);
}
for (auto i : rhs.levels.enumerate()) {
if (rhs_seen[i]) {
continue;
}
auto d = rhs.levels[i];
insert_dim(d.dim(), at::nullopt, i);
}
if (lr_dims.dims.size() != sum.size()) {
for (auto & d : sum) {
if (!lhs.levels.contains(d) && !rhs.levels.contains(d)) {
py::raise_error(DimensionBindError(), "summing over non-existant dimension %S", d.dim().ptr());
}
}
}
// std::cout << lhs.levels << " " << rhs.levels << " " << sum << "\n";
// std::cout << lro_dims.dims << " " << lo_dims.dims << " " << ro_dims.dims << " " << lr_dims.dims << "\n";
// no batch, just call mm
if (lro_dims.dims.size() != 0) {
auto lhs_ = dot_prepare(A, {lro_dims, lo_dims, lr_dims}, lhs);
auto rhs_ = dot_prepare(A, {lro_dims, lr_dims, ro_dims}, rhs);
return dot_finish(A, {lro_dims, lo_dims, ro_dims}, at::bmm(*lhs_, *rhs_));
} else {
auto lhs_ = dot_prepare(A, {lo_dims, lr_dims}, lhs);
auto rhs_ = dot_prepare(A, {lr_dims, ro_dims}, rhs);
return dot_finish(A, {lo_dims, ro_dims}, at::mm(*lhs_, *rhs_));
}
}
static PyObject* test_c(PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
PY_BEGIN
Arena A;
Slice<int> s(A, 3, 4, 5);
AT_ASSERT(s.size() == 3 && s.capacity() == 8);
AT_ASSERT(s[0] == 3 && s[1] == 4 && s[2] == 5);
s.append(A, 6);
AT_ASSERT(s[3] == 6);
for(int i : irange(10)) {
s.append(A, i);
}
AT_ASSERT(s[0] == 3 && s.back() == 9 && s.size() == 14 && s.capacity() == 16);
Slice<int> s2(A, -1, -2, -3);
AT_ASSERT(s2[1] == -2 && s[0] == 3);
auto ss = s.slice(1,2);
AT_ASSERT(ss.size() == 1);
AT_ASSERT(ss[0] == 4);
AT_ASSERT(ss.capacity() == 1);
ss.append(A, -4);
AT_ASSERT(ss.size() == 2 && ss[1] == -4);
ss[0] = 3;
AT_ASSERT(s[1] == 4);
s.insert(A, s.slice(1, 4), ss);
AT_ASSERT(s[1] == 3 && s[2] == -4 && s[3] == 0);
auto sz = s.size();
s.insert(A, s.slice(1, 1), 4);
AT_ASSERT(s[1] == 4 && sz + 1 == s.size());
Slice<int> d(A, 0, 1, 2, 3, 4);
Slice<int> b(A, 0, 1, 2, 3, 4);
b.insert(A, b.slice(1,1), d);
AT_ASSERT(b.size() == 10);
AT_ASSERT(b[1] == 0);
AT_ASSERT(b[5] == 4);
AT_ASSERT(b.back() == 4);
Py_RETURN_NONE;
PY_END(nullptr);
}
static DimEntry _wrap_dim(py::handle d, size_t N, bool keepdim);
static PyObject* order(PyObject *_,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
Arena A;
PY_BEGIN
if (kwnames) {
py::raise_error(PyExc_TypeError, "unexpected keyword arguments %S", kwnames);
}
AT_ASSERT(nargs-- > 0);
Slice<DimEntry> orig_levels;
Slice<DimEntry> levels;
TensorRef data;
py::handle self = args++[0];
bool has_device;
if (Tensor::check_exact(self)) {
auto t = Tensor::unchecked_wrap(self);
orig_levels = t->levels();
data = t->tensor(A);
has_device = t->has_device();
} else {
auto d = Dim::unchecked_wrap(self);
orig_levels.append(A, d);
data = d->range();
has_device = false;
}
Slice<DimEntry> flat_positional_dims;
Slice<std::pair<int, int>> to_flatten;
levels.extend(A, orig_levels);
int orig_ndim = ndim_of_levels(levels);
auto append = [&](DimEntry d) {
auto midx = levels.index(d);
if (!midx) {
if (d.is_positional()) {
py::raise_error(PyExc_ValueError, "tensor has %d positional dimensions, but %d specified, or it was specified twice", int(orig_ndim), int(d.position() + orig_ndim));
} else {
py::raise_error(PyExc_ValueError, "tensor of dimensions %R does not contain dim %R or it was specified twice", levels_to_tuple(orig_levels).ptr(), d.dim().ptr());
}
}
levels[*midx] = DimEntry();
flat_positional_dims.append(A, d);
};
int n_new_positional = 0;
for (auto i :irange(nargs)) {
py::handle arg = args[i];
DimEntry entry = _wrap_dim(arg, orig_ndim, false);
if (!entry.is_none()) {
append(entry);
++n_new_positional;
} else if (DimList::check(arg)) {
auto dl = DimList::unchecked_wrap(arg);
for (py::obj<Dim> & d : dl->dims_) {
append(py::hdl<Dim>(d));
++n_new_positional;
}
} else {
++n_new_positional;
if (!py::is_sequence(arg)) {
py::raise_error(PyExc_ValueError, "expected a Dim, List[Dim], or Sequence[Dim]");
}
py::sequence_view sq(arg);
auto N = sq.size();
to_flatten.append(A, std::make_pair(flat_positional_dims.size(), N));
for (auto j : irange(N)) {
DimEntry e = _wrap_dim(A.autorelease(sq[j]), orig_ndim, false);
if (e.is_none()) {
py::raise_error(PyExc_ValueError, "expected a Dim, or int");
}
append(e);
}
}
}
int ndim = 0;
int insert_point = -1;
Slice<DimEntry> new_levels;
for (auto l : levels) {
if (l.is_none()) {
continue;
}
if (l.is_positional()) {
ndim++;
if (insert_point == -1) {
insert_point = new_levels.size();
new_levels.extend(A, flat_positional_dims);
}
}
new_levels.append(A, l);
}
if (insert_point == -1) {
insert_point = new_levels.size();
new_levels.extend(A, flat_positional_dims);
}
at::Tensor ndata = *_match_levels(A, data, orig_levels, new_levels);
if (to_flatten.size()) {
Slice<int64_t> view;
auto sz = ndata.sizes();
// before the new positional dims
for (auto i : irange(0, insert_point)) {
view.append(A, sz[i]);
}
int i = 0;
for (auto to_flat : to_flatten) {
for (;i < to_flat.first; ++i) {
view.append(A, sz[insert_point + i]);
}
int64_t new_size = 1;
int last = i + to_flat.second;
for (; i < last; ++i) {
new_size *= sz[insert_point + i];
}
view.append(A, new_size);
}
for (; i < flat_positional_dims.size(); ++i) {
view.append(A, sz[insert_point + i]);
}
// after the new positional dims
for (auto i : irange(insert_point + flat_positional_dims.size(), levels.size())) {
view.append(A, sz[i]);
}
// we shorted the number of dimension, so remove them from new levels
// we will renumber them later
auto n_to_remove = flat_positional_dims.size() - n_new_positional;
new_levels.insert(A, new_levels.slice(insert_point, insert_point + n_to_remove), Slice<DimEntry>());
ndata = std::move(ndata).reshape(at::IntArrayRef(view.begin(), view.end()));
}
// renumber the positional dimension
int seen = 0;
for (auto i : new_levels.reversed_enumerate()) {
if (new_levels[i].is_positional() || (i >= insert_point && i < insert_point + n_new_positional)) {
new_levels[i] = --seen;
}
}
return Tensor::from_positional(A, std::move(ndata), new_levels, has_device).release();
PY_END(nullptr)
}
static PyObject* expand(PyObject *_,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
Arena A;
PY_BEGIN
AT_ASSERT(nargs-- > 0);
auto info = TensorInfo::create(A, args++[0], false);
for (auto i : irange(nargs)) {
if (!Dim::check(args[i])) {
maybeInitializeGlobals();
py::vector_args vargs(args - 1, nargs + 1, kwnames);
if (THPVariable_Check(args[-1])) {
return torch_Tensor_expand.call_vector(vargs).release();
} else {
return __torch_function__(A, torch_Tensor_expand, vargs, false).release();
}
}
}
const at::Tensor& data = *info.tensor;
auto levels = info.levels;
Slice<DimEntry> new_levels;
Slice<int64_t> sz;
Slice<int64_t> sd;
for (auto i : irange(nargs)) {
auto d = Dim::unchecked_wrap(args[i]);
if (levels.contains(d) || new_levels.contains(d)) {
py::raise_error(DimensionBindError(), "expanding dimension %R already exists in tensor with dims", d.ptr());
}
new_levels.append(A, d);
sz.append(A, d->size());
sd.append(A, 0);
}
new_levels.extend(A, levels);
at::IntArrayRef osz = data.sizes();
at::IntArrayRef osd = data.strides();
sz.extend(A, osz.begin(), osz.end());
sd.extend(A, osd.begin(), osd.end());
at::Tensor ndata = data.as_strided(at::IntArrayRef(sz.begin(), sz.end()), at::IntArrayRef(sd.begin(), sd.end()), data.storage_offset());
return Tensor::from_positional(A, std::move(ndata), new_levels, info.has_device).release();
PY_END(nullptr)
}
void _bind_dims_to_size(Arena & A, int64_t sz, int64_t sd,
Slice<py::hdl<Dim>> dims, Slice<int64_t>& nsz, Slice<int64_t>& nsd) {
int64_t rhs_prod = 1;
for (auto i : dims.enumerate()) {
if (!dims[i]->is_bound()) {
for (auto j : irange(i + 1, dims.size())) {
if (!dims[j]->is_bound()) {
py::raise_error(DimensionBindError(), "cannot infer the sizes of two dimensions at once %R and %R", dims[i].ptr(), dims[j].ptr());
}
rhs_prod *= dims[j]->size();
}
if (sz % rhs_prod != 0) {
py::tuple tup(dims.size());
for (auto j : dims.enumerate()) {
tup.set(j, dims[j]->is_bound() ? py::from_int(dims[j]->size()) : py::unicode_from_string("?"));
}
py::raise_error(DimensionBindError(), "inferred dimension does not evenly fit into larger dimension: %d vs %R", (int) sz, tup.ptr());
}
int64_t inferred_size = sz / rhs_prod;
dims[i]->set_size(inferred_size);
rhs_prod = sz;
break;
}
rhs_prod *= dims[i]->size();
}
if (rhs_prod != sz) {
py::tuple tup(dims.size());
for (auto j : dims.enumerate()) {
tup.set(j, py::object::borrow(dims[j]));
}
py::raise_error(DimensionBindError(), "Dimension sizes to do not match (%d != %d) when matching dimension pack %R", (int) sz, (int) rhs_prod, tup.ptr());
}
auto new_strides = A.allocate<int64_t>(dims.size());
auto prev_stride = sd;
for (auto i : dims.reversed_enumerate()) {
new_strides[i] = prev_stride;
prev_stride = dims[i]->size()*prev_stride;
}
for (auto i : dims.enumerate()) {
nsd.append(A, new_strides[i]);
nsz.append(A, dims[i]->size());
}
}
inline bool has_dims(py::handle d) {
return Dim::check_exact(d) || Tensor::check_exact(d);
}
struct IndexingInfo {
bool can_call_original; // if true, then it is safe to just call getitem or setitem, these objects do not need special handling
bool advanced_indexing; // requires actual lookup
TensorRef self;
Slice<py::handle> flat_inputs;
Slice<DimEntry> result_levels;
bool has_device;
};
static Slice<py::handle> as_slice(py::tuple_view tv) {
PyObject** begin = &PyTuple_GET_ITEM(tv.ptr(),0);
return Slice<py::handle>((py::handle*)begin, (py::handle*) (begin + tv.size()));
}
static Slice<py::handle> as_slice(py::list_view tv) {
PyObject** begin = &PyList_GET_ITEM(tv.ptr(),0);
return Slice<py::handle>((py::handle*)begin, (py::handle*) (begin + tv.size()));
}
bool maybe_dimpack(Slice<py::handle>& elements, py::handle s, bool check_first=true) {
// can we avoid rechecking?
if (py::list_view::check(s)) {
py::list_view tv(s);
if (!check_first || (tv.size() && Dim::check_exact(tv[0]))) {
elements = as_slice(tv);
return true;
}
}
// can we avoid rechecking?
if (py::tuple_view::check(s)) {
py::tuple_view tv(s);
if (!check_first || (tv.size() && Dim::check_exact(tv[0]))) {
elements = as_slice(tv);
return true;
}
}
return false;
};
bool is_dimpack(py::handle s) {
Slice<py::handle> e;
return maybe_dimpack(e, s);
}
IndexingInfo getsetitem_flat(Arena& A, TensorInfo self_info, Slice<py::handle> input, Slice<DimEntry> keys, Slice<py::handle> values, bool has_dimpacks_or_none);
static py::object invoke_getitem(Arena& A, const IndexingInfo& iinfo);
static py::object index(Arena& A, py::handle self, py::handle dims, py::handle indices) {
maybeInitializeGlobals();
Slice<py::handle> dims_list;
Slice<py::handle> indices_list;
// we allow for matching single dims to multiple dims,
// so we first have to normalize everything into the case where there is a list on lhs and the rhs
bool lhs_list = py::tuple_view::check(dims) || py::list_view::check(dims);
bool rhs_list = py::tuple_view::check(indices) || py::list_view::check(indices);
if (lhs_list && rhs_list) {
py::sequence_view dv(dims);
py::sequence_view ind(indices);
Py_ssize_t N = dv.size();
if (N != ind.size()) {
py::raise_error(PyExc_TypeError, "dims (%d) and indices (%d) must have the same length", int(N), int(ind.size()));
}
for (auto i : irange(N)) {
dims_list.append(A, A.autorelease(dv[i]));
indices_list.append(A, A.autorelease(ind[i]));
}
} else {
dims_list.append(A, dims);
indices_list.append(A, indices);
}
// dims being indexed can be grouped together into a single index space, and we have to
// flatten them int a single dimension before we can index them...
auto self_info = TensorInfo::create(A, self, false);
auto ndim = self_info.ndim();
Slice<DimEntry> new_levels;
Slice<DimEntry> to_flatten;
Slice<DimEntry> dims_list_flat;
auto parse_dim_entry = [&](py::handle s) -> DimEntry {
auto d = _wrap_dim(s, ndim, false);
if (d.is_none()) {
py::raise_error(PyExc_TypeError, "expected a dimension specifyer but found %R", s.ptr());
}
return d;
};
auto dim_not_present = [&](DimEntry d) {
if (d.is_positional()) {
py::raise_error(PyExc_TypeError, "dimension %d not in tensor of %d dimensions", d.position() + ndim , ndim);
} else {
py::raise_error(PyExc_TypeError, "dimension %R not in tensor", d.dim()->ptr());
}
};
for (auto i : dims_list.enumerate()) {
Slice<py::handle> m;
if (maybe_dimpack(m, dims_list[i], /*check_first=*/false)) {
if (m.size() == 0) {
// plausible semantics work for this to have 0 elements (e.g. the index will always be 0)
dims_list_flat.append(A, DimEntry()); // value is just dropped
}
auto first = parse_dim_entry(m[0]);
dims_list_flat.append(A, first);
if (m.size() == 1) {
continue;
}
if (to_flatten.size() == 0) {
new_levels.extend(A, self_info.levels);
}
Slice<DimEntry> rest;
for (auto i : irange(1, m.size())) {
auto d = parse_dim_entry(m[i]);
if (!new_levels.remove(A, d)) {
dim_not_present(d);
}
rest.append(A, d);
}
auto first_idx = new_levels.index(first);
if (!first_idx) {
dim_not_present(first);
}
new_levels.insert(A, new_levels.slice(*first_idx + 1, *first_idx + 1), rest);
to_flatten.extend(A, rest);
} else {
dims_list_flat.append(A, parse_dim_entry(dims_list[i]));
}
}
if (to_flatten.size() > 0) {
TensorRef rearranged = _match_levels(A, self_info.tensor, self_info.levels, new_levels);
at::IntArrayRef sizes = rearranged->sizes();
Slice<int64_t> new_sizes;
Slice<DimEntry> reshape_levels;
for (auto i : new_levels.enumerate()) {
if (to_flatten.contains(new_levels[i])) {
new_sizes.back() *= sizes[i];
} else {
new_sizes.append(A, sizes[i]);
reshape_levels.append(A, new_levels[i]);
}
}
self_info.tensor = A.autorelease(rearranged->reshape(at::IntArrayRef(new_sizes.begin(), new_sizes.end())));
self_info.levels = reshape_levels; // note: we are using the first level in a flattened group to represent the group for the rest of the op
// we need to be careful not to rely the dimensions size because it doesnt match the size of the whole group
}
bool has_dimpacks = false;
for (auto idx : indices_list) {
if (py::tuple_view::check(idx) || py::list_view::check(idx)) {
has_dimpacks = true;
break;
}
}
IndexingInfo info = getsetitem_flat(A, self_info, Slice<py::handle>(), dims_list_flat, indices_list, has_dimpacks);
return invoke_getitem(A, info);
}
// true -- the indices were flattend out of a tuple, list or sequence...
Slice<py::handle> slice_from_sequence(Arena& A, py::handle value) {
if (py::tuple_view::check(value)) {
return as_slice(py::tuple_view(value));
} else if (py::list_view::check(value)) {
return as_slice(py::list_view(value));
} else {
py::sequence_view sv(value);
Slice<py::handle> r;
for (auto i : sv.enumerate()) {
r.append(A, A.autorelease(sv[i]));
}
return r;
}
}
bool extractIndices(Arena& A, py::handle index, Slice<py::handle>& indices) {
if (py::tuple_view::check(index)) {
indices.extend(A, as_slice(py::tuple_view(index)));
return true;
} else if (THPVariable_Check(index.ptr())) {
indices.append(A, index);
return false;
} else if (!py::is_sequence(index)) {
indices.append(A, index);
return false;
}
// a copy of treatSequenceAsTuple modified to add Dim and our wrapped tensors..
py::sequence_view sv(index);
if (sv.size() >= 32) {
indices.extend(A, slice_from_sequence(A, index));
return true;
}
for (auto i : sv.enumerate()) {
py::handle item;
try {
item = sv[i];
} catch (py::exception_set & e) {
PyErr_Clear();
indices.append(A, index);
return false;
}
if (THPVariable_Check(item.ptr()) || py::is_sequence(item) || PySlice_Check(item.ptr()) || item.ptr() == Py_Ellipsis || py::is_none(item) || has_dims(item)) {
indices.extend(A, slice_from_sequence(A, index));
return true;
}
}
indices.append(A, index);
return false;
}
static IndexingInfo getsetitem(Arena & A, py::handle self, py::handle index, bool tensors_have_dims) {
bool can_call_original_getitem = !tensors_have_dims;
Slice<py::handle> input;
if (has_dims(index)) {
input.append(A, index);
} else {
bool is_sequence = extractIndices(A, index, input);
// nothing about first class dims here, fallback to getitem
if (can_call_original_getitem && !is_sequence) {
return { true };
}
}
int64_t dims_indexed = 0;
int64_t expanding_object = -1;
DimList* unbound_dim_list = nullptr;
auto check_expanding = [&](int64_t i) {
if (expanding_object != -1) {
py::raise_error(DimensionBindError(), "at most one ... or unbound dimension list can exist in indexing list but found 2 at offsets %d and %d", (int) expanding_object, (int) i);
}
expanding_object = i;
};
Slice<int64_t> dimlists;
// calculate how many dimensioned have been indexed in order to compute the size of ...
// or expand a potentially unbound dimension list.
bool has_dimpacks_or_none = false;
for (auto i : input.enumerate()) {
py::handle s = input[i];
if (Dim::check_exact(s) || Tensor::check_exact(s)) {
can_call_original_getitem = false;
++dims_indexed;
} else if (s.ptr() == Py_Ellipsis) {
check_expanding(i);
} else if (DimList::check(s)) {
can_call_original_getitem = false;
auto dl = DimList::unchecked_wrap(s);
if (!dl->is_bound()) {
check_expanding(i);
unbound_dim_list = dl.ptr();
} else {
dims_indexed += dl->dims_.size();
}
dimlists.append(A, i);
} else if (py::is_none(s)) {
has_dimpacks_or_none = true;
} else if (is_dimpack(s)) {
can_call_original_getitem = false;
has_dimpacks_or_none = true;
++dims_indexed;
} else {
++dims_indexed;
}
}
// at this point if we haven't seen any Dim objects, we also can fallback to the original getitem.
if (can_call_original_getitem) {
return {true};
}
// std::cout << "__getitem__ " << self << " " << index << "\n";
TensorInfo self_info = TensorInfo::create(A, self, false, true);
auto ndim = self_info.ndim();
if (dims_indexed > ndim) {
py::raise_error(PyExc_ValueError, "at least %d indices were supplied but the tensor only has %d dimensions", (int) dims_indexed, (int) ndim);
}
// expand any unbound dimension list, or expand ... into individual : slices.
auto expanding_dims = ndim - dims_indexed;
if (expanding_object != -1) {
if (unbound_dim_list) {
unbound_dim_list->bind_len(expanding_dims);
} else {
// ...
Slice<py::handle> no_slices;
for (auto i : irange(expanding_dims)) {
(void) i;
no_slices.append(A, no_slice);
}
input.insert(A, input.slice(expanding_object, expanding_object + 1), no_slices);
}
}
// flatten out any dimensions stored in dimlist elements directly into the inputs
// std::cout << dimlists << " <- dim lists!\n";
for (int64_t i = dimlists.size() - 1; i >=0; --i) {
auto idx = dimlists[i];
// we added more elements to input because of ...
// so we need to also adjust the index to get back to where the
// dimlist existed
if (!unbound_dim_list && expanding_object != -1 && idx > expanding_object) {
idx += expanding_dims;
}
auto dl = DimList::unchecked_wrap(input[idx]);
// XXX would be better if we used an OwnedSlice in DimList
Slice<py::handle> more_dims((py::handle*) &*dl->dims_.begin(), (py::handle*) &*dl->dims_.end());
input.insert(A, input.slice(idx, idx + 1), more_dims);
}
return getsetitem_flat(A, self_info, input, Slice<DimEntry>(), Slice<py::handle>(), has_dimpacks_or_none);
}
IndexingInfo getsetitem_flat(Arena& A, TensorInfo self_info, Slice<py::handle> input, Slice<DimEntry> keys, Slice<py::handle> values, bool has_dimpacks_or_none) {
// At this point:
// ..., DimList have been eliminated
// Dim, Tensor, Tuple[Dim,...], int, slice still remain
// we have to count how many times we see a dimension.
// A[i,j] is a simple binding operation, but A[i, i+j] or A[i, i] requires advanced indexing.
Slice<py::hdl<Dim>> seen_dims;
Slice<int64_t> seen_dims_nuses;
auto add_dim = [&](py::hdl<Dim> entry) {
auto midx = seen_dims.index(entry);
if (!midx) {
seen_dims.append(A, entry);
seen_dims_nuses.append(A, 1);
} else {
++seen_dims_nuses[*midx];
}
};
Slice<py::handle> input_it = input;
Slice<py::handle> flat_inputs;
// flat inputs will start with an empty py::handle if the
// actual value is in the tensor-like object in the tensor info
Slice<TensorInfo> tensor_inputs;
auto append_flat_handle = [&](py::handle h) {
flat_inputs.append(A, h);
tensor_inputs.append(A, TensorInfo());
};
TensorRef device_holding_tensor;
auto append_tensor_input = [&](TensorInfo ti) {
flat_inputs.append(A, py::handle());
tensor_inputs.append(A, ti);
if (ti.has_device && !device_holding_tensor) {
device_holding_tensor = ti.tensor;
}
};
Slice<int64_t> nsz;
Slice<int64_t> nsd;
at::IntArrayRef sz = self_info.tensor->sizes();
at::IntArrayRef sd = self_info.tensor->strides();
auto append_size = [&](int i) {
if (has_dimpacks_or_none) {
nsz.append(A, sz[i]);
nsd.append(A, sd[i]);
}
};
// std::cout << "self levels: " << self_info.levels << "\n";
auto parse_nones = [&]() {
while (input_it.size() && py::is_none(input_it[0])) {
append_flat_handle(no_slice);
nsz.append(A, 1);
nsd.append(A, 0);
input_it = input_it.slice(1);
}
};
auto append_item = [&](int i, py::handle arg) {
if (Dim::check_exact(arg)) {
auto d = Dim::unchecked_wrap(arg);
d->set_size(sz[i]);
add_dim(d);
append_size(i);
append_flat_handle(arg);
return;
}
auto info = TensorInfo::create(A, arg, false, false);
if (info) {
append_size(i);
append_tensor_input(info);
for (auto il : info.levels) {
if (!il.is_positional()) {
add_dim(il.dim());
}
}
return;
}
if (has_dimpacks_or_none) {
Slice<py::handle> mp;
if (maybe_dimpack(mp, arg)) {
// dim pack
Slice<py::hdl<Dim>> dim_pack;
for (auto d : mp) {
dim_pack.append(A, Dim::wrap(d));
add_dim(dim_pack.back());
append_flat_handle(dim_pack.back());
}
_bind_dims_to_size(A, sz[i], sd[i], dim_pack, nsz, nsd);
return;
}
}
append_size(i);
append_flat_handle(arg);
};
// pair up the indexing expressions with dimension of self it indexes
// self may have first-class dims, which do not participate the indexing.
for (auto i : self_info.levels.enumerate()) {
auto l = self_info.levels[i];
auto idx = keys.index(l);
if (idx) {
append_item(i, values[*idx]);
} else if (l.is_positional()) {
// grab and index from the positional list
parse_nones();
if (!input_it.size()) {
// we might have fewer indices than tensor dimensions,
// which implicitly indexes the remaining dimensions with :
append_flat_handle(no_slice);
append_size(i);
} else {
py::handle arg = input_it[0];
input_it = input_it.slice(1);
append_item(i, arg);
}
} else {
add_dim(l.dim());
append_flat_handle(l.dim());
append_size(i);
}
}
// any training Nones may have no existing dimension associated with them in self.
parse_nones();
// we have to restride the tensor to collapse dimension packs and introduce our none dimensions.
if (has_dimpacks_or_none) {
self_info.tensor = A.autorelease(self_info.tensor->as_strided(at::IntArrayRef(nsz.begin(), nsz.end()),at::IntArrayRef(nsd.begin(), nsd.end()), self_info.tensor->storage_offset()));
}
// figure out what the shape of the indexing tensors will be
// and what the shape of the resulting tensor will be
Slice<DimEntry> result_levels;
Slice<DimEntry> index_levels;
int64_t tensor_insert_point = -1;
bool requires_getindex = false;
auto mark_tensor_index = [&] {
if (tensor_insert_point == -1) {
tensor_insert_point = result_levels.size();
} else if (tensor_insert_point != result_levels.size()) {
tensor_insert_point = 0;
}
};
for (auto i : flat_inputs.enumerate()) {
auto inp = flat_inputs[i];
if(tensor_inputs[i]) {
requires_getindex = true;
mark_tensor_index();
for (auto l : tensor_inputs[i].levels) {
// std::cout << "Consider to add " << l << "\n";
if (!index_levels.contains(l)) {
index_levels.append(A, l);
}
}
} else if (Dim::check_exact(inp)) {
auto d = Dim::unchecked_wrap(inp);
// dimesions used once are just binding operations
if (1 == seen_dims_nuses[*seen_dims.index(d)]) {
flat_inputs[i] = no_slice;
result_levels.append(A, d);
} else {
requires_getindex = true;
flat_inputs[i] = py::handle();
tensor_inputs[i] = TensorInfo {d->range(), Slice<DimEntry>(A, DimEntry(d)), false, TensorRef()};
if (!index_levels.contains(d)) {
index_levels.append(A, d);
}
mark_tensor_index();
}
} else {
if (inp.ptr() != no_slice.ptr()) {
requires_getindex = true;
}
if (!py::is_int(inp)) {
// note: actual positional indexes are accurately computed later
result_levels.append(A, -1);
}
}
}
// indexing dimensions appear in the tensor at the _first use of a tensor_ in the indexing. So insert
// the indexing leveles into the result klevels at this spot
if (tensor_insert_point != -1) {
result_levels.insert(A, result_levels.slice(tensor_insert_point, tensor_insert_point), index_levels);
}
// std::cout << "flat inputs: " << flat_inputs << "\n";
// std::cout << "result_levels: " << result_levels << "\n";
// std::cout << "index_levels: " << index_levels << "\n";
// get all the tensors to be the right shape for indexing
if (requires_getindex) {
for (auto i : flat_inputs.enumerate()) {
if (tensor_inputs[i]) {
AT_ASSERT(!flat_inputs[i].ptr());
// std::cout << "tensor " << i << " " << tensor_inputs[i].levels << "\n";
TensorRef t = tensor_inputs[i].tensor;
if (!tensor_inputs[i].has_device && device_holding_tensor) {
t = A.autorelease(t->to(device_holding_tensor->device()));
}
flat_inputs[i] = handle_from_tensor(A, _match_levels(A, t, tensor_inputs[i].levels, index_levels));
}
}
}
// previously we didn't know how many positional dimensions there would be so we couldn't number them right
// so fill it in now.
auto seen_positionals = 0;
for (auto i : result_levels.reversed_enumerate()) {
if (result_levels[i].is_positional()) {
result_levels[i] = -(++seen_positionals);
}
}
return IndexingInfo {false, requires_getindex, self_info.tensor, flat_inputs, result_levels, self_info.has_device};
}
static py::object invoke_getitem(Arena& A, const IndexingInfo& iinfo) {
at::Tensor rtensor;
if (iinfo.advanced_indexing) {
auto self_hdl = handle_from_tensor(A, iinfo.self);
auto tup = slice_to_tuple(iinfo.flat_inputs);
// std::cout << "calling original getindex " << self_hdl << " " << tup << "\n";
auto pytensor = py::object::checked_steal(THPVariable_getitem(self_hdl.ptr(), tup.ptr()));
rtensor = THPVariable_Unpack(pytensor.ptr());
} else {
// std::cout << "skipping original getindex\n";
rtensor = *iinfo.self;
}
// std::cout << "returning (from_positional)\n";
return Tensor::from_positional(A, std::move(rtensor), iinfo.result_levels, iinfo.has_device);
}
static py::object __getitem__(Arena & A, py::handle self, py::handle index) {
maybeInitializeGlobals();
auto iinfo = getsetitem(A, self, index, has_dims(self));
if (iinfo.can_call_original) {
return py::object::checked_steal(THPVariable_getitem(self.ptr(), index.ptr()));
}
return invoke_getitem(A, iinfo);
}
PyObject* Tensor_getitem(PyObject* self, PyObject* index) {
Arena A;
PY_BEGIN
return __getitem__(A, self, index).release();
PY_END(nullptr);
}
static void __setitem__(Arena & A, py::handle self, py::handle index, py::handle rhs) {
maybeInitializeGlobals();
auto iinfo = getsetitem(A, self, index, has_dims(self) || has_dims(rhs));
if (iinfo.can_call_original) {
if (-1 == THPVariable_setitem(self.ptr(), index.ptr(), rhs.ptr())) {
throw py::exception_set();
}
return;
}
auto rhs_info = TensorInfo::create(A, rhs, false, false);
if (rhs_info) { // otherwise rhs can be a scalar...
for (auto l : rhs_info.levels) {
if (!iinfo.result_levels.contains(l)) {
if (l.is_positional()) {
py::raise_error(DimensionBindError(), "rhs contains too many dimensions (%d) compared to indexed value (%d)", ndim_of_levels(iinfo.result_levels), rhs_info.ndim());
} else {
auto tup = levels_to_tuple(iinfo.result_levels);
py::raise_error(DimensionBindError(), "rhs of setitem contains dimension %R which is not in the dimension on the left (%R)", l.dim().ptr(), tup.ptr());
}
}
}
auto rhs_matched = _match_levels(A, rhs_info.tensor, rhs_info.levels, iinfo.result_levels);
rhs = handle_from_tensor(A, rhs_matched);
}
self = handle_from_tensor(A, iinfo.self);
if (iinfo.advanced_indexing) {
auto tup = slice_to_tuple(iinfo.flat_inputs);
if (-1 == THPVariable_setitem(self.ptr(), tup.ptr(), rhs.ptr())) {
throw py::exception_set();
}
} else {
torch_Tensor_copy_.call(self, rhs);
}
}
int Tensor_setitem(PyObject* self, PyObject* index, PyObject* value) {
Arena A;
PY_BEGIN
__setitem__(A, self, index, value);
return 0;
PY_END(-1);
}
static PyObject* py___getitem__(PyObject *_,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
Arena A;
PY_BEGIN
AT_ASSERT(nargs == 2);
return __getitem__(A, args[0], args[1]).release();
PY_END(nullptr)
}
static PyObject* py___setitem__(PyObject *_,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
Arena A;
PY_BEGIN
AT_ASSERT(nargs == 3);
__setitem__(A, args[0], args[1], args[2]);
Py_RETURN_NONE;
PY_END(nullptr)
}
static PyObject* py_index(PyObject *_,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
Arena A;
PY_BEGIN
py::vector_args va(args, nargs, kwnames);
py::handle self, dims, indices;
va.parse("index", {"self", "dims", "indices"}, {&self, &dims, &indices}, 3);
return index(A, self, dims, indices).release();
PY_END(nullptr)
}
static PyObject* py_stack(PyObject *_,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
Arena A;
PY_BEGIN
py::vector_args va(args, nargs, kwnames);
py::handle tensors, new_dim, dim;
va.parse("stack", {"tensors", "new_dim", "dim"}, {&tensors, &new_dim, &dim}, 2);
Slice<DimEntry> result_levels;
Slice<TensorInfo> infos;
py::sequence_view sv(tensors);
auto new_dim_d = Dim::wrap(new_dim);
for (auto i : sv.enumerate()) {
infos.append(A, TensorInfo::create(A, A.autorelease(sv[i]), false));
for (auto l : infos.back().levels) {
if (!result_levels.contains(l)) {
result_levels.append(A, l);
}
}
}
new_dim_d->set_size(infos.size());
std::vector<at::Tensor> inputs;
inputs.reserve(infos.size());
for (auto in : infos) {
inputs.emplace_back(*_match_levels(A, in.tensor, in.levels, result_levels));
}
auto ndim = ndim_of_levels(result_levels);
int64_t rawdim = 0;
if (dim.ptr()) {
auto d = _wrap_dim(dim, ndim, false);
auto idx = result_levels.index(d);
if (!idx) {
py::raise_error(PyExc_TypeError, "Dimension %R does not exist in inputs", dim.ptr());
}
rawdim = *idx;
}
auto result = at::stack(inputs, rawdim);
result_levels.insert(A, rawdim, new_dim_d);
return Tensor::from_positional(A, std::move(result), result_levels, true).release();
PY_END(nullptr)
}
static PyObject* py_split(PyObject *_,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
Arena A;
PY_BEGIN
maybeInitializeGlobals();
py::vector_args va(args, nargs, kwnames);
py::handle self, split_size_or_sections, dim;
va.parse("split", {"self", "split_size_or_sections", "dim"}, {&self, &split_size_or_sections, &dim}, 2);
bool dim_is_object = dim.ptr() && Dim::check_exact(dim);
Slice<py::handle> sizes;
bool all_dims = true;
bool all_ints = true;
if (!py::is_int(split_size_or_sections)) {
py::sequence_view sv(split_size_or_sections);
for (auto i : sv.enumerate()) {
sizes.append(A, A.autorelease(sv[i]));
if (Dim::check_exact(sizes.back())) {
all_ints = false;
} else {
all_dims = false;
}
}
}
if (all_ints) {
if (dim_is_object) {
py::raise_error(PyExc_TypeError, "when dim is specified as a Dim object, split sizes must also be dimensions.");
}
// call original split (if self has dimensions this will use torch function to do the split)
return torch_Tensor_split.call_vector(py::vector_args(args, nargs, kwnames)).release();
}
if (!all_dims) {
py::raise_error(PyExc_TypeError, "split list must be ints or dims but got a mix");
}
auto self_info = TensorInfo::create(A, self, false);
auto ndim = self_info.ndim();
if (!dim_is_object&& ndim == 0) {
py::raise_error(PyExc_TypeError, "split expects at least a 1-dimension tensor");
}
DimEntry dim_l = dim.ptr() ? _wrap_dim(dim, ndim, false) : -ndim;
auto idx = self_info.levels.index(dim_l);
if (!idx) {
if (!dim.ptr()) {
dim = A.autorelease(py::from_int(0));
}
py::raise_error(PyExc_TypeError, "tensor does not comtain dimension %R", dim.ptr());
}
Slice<int64_t> indices;
int64_t total_size = 0;
Slice<int64_t> unbound;
for (auto i : sizes.enumerate()) {
auto d = Dim::unchecked_wrap(sizes[i]);
if (d->is_bound()) {
indices.append(A, d->size());
total_size += indices.back();
} else {
indices.append(A, 0);
unbound.append(A, i);
}
}
auto tensor_size = self_info.tensor->sizes()[*idx];
if (unbound.size()) {
if (total_size > tensor_size) {
py::raise_error(PyExc_TypeError, "sizes of target dimensions add up to more (%d) than source dim (%d)", int(total_size), int(tensor_size));
}
auto remaining_size = tensor_size - total_size;
auto chunk_size = (remaining_size + unbound.size() - 1) / unbound.size();
for (auto u : unbound) {
auto sz = std::min(chunk_size, remaining_size);
Dim::unchecked_wrap(sizes[u])->set_size(sz);
indices[u] = sz;
remaining_size -= sz;
}
} else if (tensor_size != total_size) {
py::raise_error(PyExc_TypeError, "sum of sizes of target dimensions (%d) do not match the than source dim (%d)", int(total_size), int(tensor_size));
}
auto result_tensors = self_info.tensor->split_with_sizes(at::IntArrayRef(indices.begin(), indices.end()), *idx);
py::tuple result(result_tensors.size());
Slice<DimEntry> new_levels;
new_levels.extend(A, self_info.levels);
for (auto i : sizes.enumerate()) {
new_levels[*idx] = Dim::unchecked_wrap(sizes[i]);
result.set(i, Tensor::from_positional(A, std::move(result_tensors[i]), new_levels, true));
}
return result.release();
PY_END(nullptr)
}
static DimEntry _wrap_dim(py::handle d, size_t N, bool keepdim) {
if (Dim::check(d)) {
if (keepdim) {
py::raise_error(PyExc_ValueError, "cannot preserve first-class dimensions with keepdim=True");
}
return Dim::unchecked_wrap(d);
} else if (py::is_int(d)) {
auto i = py::to_int(d);
while (i >= 0) {
i -= N;
}
return i;
} else {
return DimEntry();
}
}
static Slice<DimEntry> _wrap_dims(Arena& A, py::handle d, size_t N, bool keepdim) {
auto de = _wrap_dim(d, N, keepdim);
Slice<DimEntry> r;
if (!de.is_none()) {
r.append(A, de);
} else {
py::sequence_view sq(d);
for (auto i : sq.enumerate()) {
r.append(A, _wrap_dim(A.autorelease(sq[i]), N, keepdim));
}
}
return r;
}
struct WrappedOperator : public py::base<WrappedOperator> {
py::object orig;
PyMethodDef method_def;
py::object name, doc;
bool is_pointwise = false;
int64_t dim_offset = 0;
int64_t keepdim_offset = 1;
std::string dim_name;
bool single_dim = false;
bool reduce = true;
static PyTypeObject Type;
void init(py::object orig_, PyCFunction wrapper_implementation, std::string dim_name_="") {
orig = std::move(orig_);
method_def.ml_meth = wrapper_implementation;
name = orig.attr("__name__");
doc = orig.attr("__doc__");
dim_name = std::move(dim_name_);
if (!py::is_none(doc) && !dim_name.empty()) {
doc = py::unicode_from_format("%S\nArgument '%s' can be either an integer or a torchdim.Dim object.\n", doc.ptr(), dim_name.c_str());
}
method_def.ml_name = py::is_none(name) ? "" : PyUnicode_AsUTF8(name.ptr());
method_def.ml_doc = py::is_none(doc) ? "" : PyUnicode_AsUTF8(doc.ptr());
method_def.ml_flags = METH_FASTCALL | METH_KEYWORDS;
}
py::object function() {
return py::object::checked_steal(PyCFunction_New(&method_def, ptr()));
}
};
PyTypeObject WrappedOperator::Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"_C.WrappedOperator", /* tp_name */
sizeof(WrappedOperator), /* tp_basicsize */
0, /* tp_itemsize */
WrappedOperator::dealloc_stub, /* tp_dealloc */
0, /* tp_vectorcall_offset */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
"Wrapped Object Holder", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
WrappedOperator::new_stub, /* tp_new */
};
static PyObject* patched_dim_method(PyObject * self_,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
Arena A;
auto self = WrappedOperator::unchecked_wrap(self_);
PY_BEGIN
py::vector_args va(args, nargs, kwnames);
auto _getarg = [&](const char* name, int64_t offset_) -> py::handle {
auto offset = offset_ + 1; // do not include self
auto idx = va.index(name, offset);
return idx == -1 ? py::handle() : va[idx];
};
Slice<py::handle> patched_args;
patched_args.extend(A, va.begin(), va.end());
auto _patcharg = [&](const char* name, int64_t offset_, py::handle value) {
auto offset = offset_ + 1; // do not include self
auto idx = va.index(name, offset);
if (idx == -1) {
py::raise_error(PyExc_ValueError, "Missing argument %s", name);
}
patched_args[idx] = value;
};
auto dim = _getarg(self->dim_name.c_str(), self->dim_offset);
if (!dim.ptr()) {
auto info = TensorInfo::create(A, args[0], true);
EnableAllLayers l(A, info.levels);
l.inplace_update_layers(info.batchedtensor, info.levels);
patched_args[0] = handle_from_tensor(A, info.batchedtensor);
auto r = self->orig.call_vector(patched_args.begin(), nargs, kwnames);
return l.from_batched(A, THPVariable_Unpack(r.ptr()), info.has_device).release();
}
auto info = TensorInfo::create(A, args[0]);
auto keepdim = false;
if (self->reduce) {
auto py_keepdim = _getarg("keepdim", self->keepdim_offset);
if (py_keepdim.ptr()) {
keepdim = py::to_bool(py_keepdim);
}
}
auto ndim = info.ndim();
auto dims = _wrap_dims(A, dim, ndim, keepdim);
Slice<int64_t> dim_indices;
auto seen = A.allocate<bool>(info.levels.size());
std::fill(seen, seen + info.levels.size(), false);
for (auto d : dims) {
auto midx = info.levels.index(d);
if (!midx) {
auto tup = levels_to_tuple(info.levels);
py::raise_error(PyExc_ValueError, "Tensor with dimensions %R does not contain one of %R\n", tup.ptr(), dim.ptr());
}
seen[*midx] = true;
dim_indices.append(A, *midx);
}
Slice<DimEntry> new_levels;
if (self->reduce && !keepdim) {
for (auto i : info.levels.enumerate()) {
if (!seen[i]) {
new_levels.append(A, info.levels[i]);
}
}
} else {
new_levels = info.levels;
}
py::object py_indices;
if (dim_indices.size() == 1) {
py_indices = py::from_int(dim_indices[0]);
} else {
py::tuple tup(dim_indices.size());
for (auto i : dim_indices.enumerate()) {
tup.set(i, py::from_int(dim_indices[i]));
}
py_indices = std::move(tup);
}
_patcharg(self->dim_name.c_str(), self->dim_offset, py_indices);
patched_args[0] = handle_from_tensor(A, info.tensor);
auto r = self->orig.call_vector(patched_args.begin(), nargs, kwnames);
auto wrap = [&](py::handle h) {
if (THPVariable_Check(h.ptr())) {
return A.autorelease(Tensor::from_positional(A, THPVariable_Unpack(h.ptr()), new_levels, info.has_device));
}
return h;
};
return tree_map(A, wrap, r).release();
PY_END(nullptr)
}
static PyObject* _wrap(PyObject * self_,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
Arena A;
PY_BEGIN
#define ARGS(_) _(py::handle, orig) _(py::handle, dim_offset) _(py::handle, keepdim_offset) \
_(py::handle, dim_name) _(py::handle, single_dim) _(py::handle, reduce)
MPY_PARSE_ARGS_KWNAMES("O|OOOOO", ARGS)
std::string dim_name_str;
if (dim_name.ptr()) {
dim_name_str = PyUnicode_AsUTF8(dim_name.ptr());
} else {
dim_name_str = "dim";
}
auto info = WrappedOperator::create(py::object::borrow(orig), (PyCFunction)(void*) patched_dim_method, std::move(dim_name_str));
if (dim_offset.ptr()) {
info->dim_offset = py::to_int(dim_offset);
}
if (keepdim_offset.ptr()) {
info->keepdim_offset = py::to_int(keepdim_offset);
}
if (single_dim.ptr()) {
info->single_dim = py::to_bool(single_dim);
}
if (reduce.ptr()) {
info->reduce = py::to_bool(reduce);
}
return info->function().release();
#undef ARGS
PY_END(nullptr)
}
static PyObject* call_torch_function(PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
PY_BEGIN
Arena A;
maybeInitializeGlobals();
auto info = WrappedOperator::unchecked_wrap(self);
return __torch_function__(A, info->orig, py::vector_args(args, nargs, kwnames), info->is_pointwise).release();
PY_END(nullptr)
}
static PyObject* _wrap_method(PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
PY_BEGIN
AT_ASSERT(nargs == 2);
// XXX - ignore python function wrapped, we will call torch function directly
py::handle orig = args[0];
if (!pointwise.ptr()) {
auto dim = py::import("functorch.dim");
pointwise = dim.attr("pointwise");
}
auto info = WrappedOperator::create(py::object::borrow(orig), (PyCFunction)(void*) call_torch_function);
info->is_pointwise = pointwise.contains(orig);
return PyInstanceMethod_New(info->function().release());
PY_END(nullptr);
}
static PyObject* Tensor_sum(PyObject * self_,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
Arena A;
PY_BEGIN
maybeInitializeGlobals();
py::vector_args va(args, nargs, kwnames);
auto self_ = Tensor::unchecked_wrap(args[0]);
auto d = self_->delayed();
if (!d) {
return _Tensor_sum.call_vector(va).release();
}
py::handle self, dim, keepdim, dtype;
va.parse("sum", {"self", "dim", "keepdim", "dtype"}, {&self, &dim, &keepdim, &dtype}, 1, 1);
if (dtype.ptr() || (keepdim.ptr() && py::to_bool(keepdim))) {
// std::cout << "SKIPPING fusion because dtype or keepdim=True specified\n";
return _Tensor_sum.call_vector(va).release();
}
auto levels = self_->levels();
auto N = ndim_of_levels(levels);
auto reduced_dims = _wrap_dims(A, dim, N, false);
return dot(A, TensorInfo::create(A, d->args[0], false), TensorInfo::create(A, d->args[1], false), reduced_dims).release();
PY_END(nullptr)
}
static PyObject* _parse_test(PyObject * self_,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
PY_BEGIN
maybeInitializeGlobals();
int required = py::to_int(args[0]);
int kwonly = py::to_int(args[1]);
py::vector_args va(args + 2, nargs - 2, kwnames);
py::handle a, b, c, d;
va.parse("_parse_test", {"a", "b", "c", "d"}, {&a, &b, &c, &d}, required, kwonly);
py::tuple r(4);
r.set(0, py::object::borrow(a.ptr() ? a : Py_None));
r.set(1, py::object::borrow(b.ptr() ? b : Py_None));
r.set(2, py::object::borrow(c.ptr() ? c : Py_None));
r.set(3, py::object::borrow(d.ptr() ? d : Py_None));
return r.release();
PY_END(nullptr)
}
static PyObject* _set_pointwise_optimize(PyObject * self_,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
PY_BEGIN
py::handle value;
py::vector_args va(args, nargs, kwnames);
va.parse("_set_pointwise_optimization", {"value"}, {&value}, 1);
pointwise_optimize = py::to_bool(value);
Py_RETURN_NONE;
PY_END(nullptr)
}
static PyObject* _patch_tensor_class(PyObject * self_,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) {
PY_BEGIN
auto torch = py::import("torch");
auto py_TensorBase = torch.attr("_C").attr("_TensorBase");
replaceMappingIfMatches(py_TensorBase);
Py_RETURN_NONE;
PY_END(nullptr)
}
const char* dims_doc = R"""(
dims(n=None, sizes=None) -> torchdim.Dim or Tuple[torchdim.Dim, ...]
Creates and returns one or more Dim objects.
Arg:
n (int, optional): The number of dimensions to create. Can be omitted if sizes is specified.
sizes (List[Optional[int]], optional): A list the same size as the number of dimensions to be
created, specifying each dimensions size, or None to leave the size unset.
Example::
>>> batch, channel, width, height = dims(4)
>>> batch, channel, width, height = dims(sizes=[None, 3, 224, 224])
)""";
static PyMethodDef methods[] = {
{"dims", (PyCFunction)(void*) _dims<create_dim>, METH_FASTCALL | METH_KEYWORDS, dims_doc},
{"dimlists", (PyCFunction)(void*) _dims<create_dimlist>, METH_FASTCALL | METH_KEYWORDS},
{"_test_c", (PyCFunction)(void*) test_c, METH_FASTCALL | METH_KEYWORDS},
{"_wrap_method", (PyCFunction)(void*) _wrap_method, METH_FASTCALL | METH_KEYWORDS},
{"Tensor_from_positional", (PyCFunction)(void*) py_Tensor_from_positional, METH_FASTCALL | METH_KEYWORDS},
{"__torch_function__", (PyCFunction)(void*) py___torch_function__, METH_FASTCALL | METH_KEYWORDS},
{"tree_flatten", (PyCFunction)(void*) py_tree_flatten, METH_FASTCALL | METH_KEYWORDS},
{"order", (PyCFunction)(void*) order, METH_FASTCALL | METH_KEYWORDS},
{"index", (PyCFunction)(void*) py_index, METH_FASTCALL | METH_KEYWORDS},
{"stack", (PyCFunction)(void*) py_stack, METH_FASTCALL | METH_KEYWORDS},
{"split", (PyCFunction)(void*) py_split, METH_FASTCALL | METH_KEYWORDS},
{"expand", (PyCFunction)(void*) expand, METH_FASTCALL | METH_KEYWORDS},
{"__getitem__", (PyCFunction)(void*) py___getitem__, METH_FASTCALL | METH_KEYWORDS},
{"__setitem__", (PyCFunction)(void*) py___setitem__, METH_FASTCALL | METH_KEYWORDS},
{"_wrap", (PyCFunction)(void*) _wrap, METH_FASTCALL | METH_KEYWORDS},
{"Tensor_sum", (PyCFunction)(void*) Tensor_sum, METH_FASTCALL | METH_KEYWORDS},
{"_parse_test", (PyCFunction)(void*) _parse_test, METH_FASTCALL | METH_KEYWORDS},
{"_set_pointwise_optimize", (PyCFunction)(void*) _set_pointwise_optimize, METH_FASTCALL | METH_KEYWORDS},
{"_patch_tensor_class", (PyCFunction)(void*) _patch_tensor_class, METH_FASTCALL | METH_KEYWORDS},
{NULL, NULL, 0, NULL} /* Sentinel */
};
static struct PyModuleDef module_def = {
PyModuleDef_HEAD_INIT,
"_C", /* name of module */
NULL, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,
or -1 if the module keeps state in global variables. */
methods
};
PyObject* Dim_init(void) {
Arena A;
try {
py::object mod = py::object::checked_steal(PyModule_Create(&module_def));
Dim::ready(mod, "Dim");
DimList::ready(mod, "DimList");
Tensor::ready(mod, "Tensor");
WrappedOperator::ready(mod, "_WrappedOperator");
Py_INCREF(&PyInstanceMethod_Type);
PyModule_AddObject(mod.ptr(), "_instancemethod", (PyObject *)&PyInstanceMethod_Type);
initializeGlobals(A);
return mod.release();
} catch(py::exception_set& err) {
return nullptr;
}
}