| from ..parameter import Parameter |
| from .module import Module |
| from typing import Any, Optional, Tuple, List |
| from ... import Tensor |
| |
| |
| def apply_permutation(tensor: Tensor, permutation: Tensor, dim: int = ...) -> Tensor: ... |
| |
| |
| class RNNBase(Module): |
| mode: str = ... |
| input_size: int = ... |
| hidden_size: int = ... |
| num_layers: int = ... |
| bias: bool = ... |
| batch_first: bool = ... |
| dropout: float = ... |
| bidirectional: bool = ... |
| |
| def __init__(self, mode: str, input_size: int, hidden_size: int, num_layers: int = ..., bias: bool = ..., |
| batch_first: bool = ..., dropout: float = ..., bidirectional: bool = ...) -> None: ... |
| |
| def flatten_parameters(self) -> List[Parameter]: ... |
| |
| def reset_parameters(self) -> None: ... |
| |
| def get_flat_weights(self): ... |
| |
| def check_input(self, input: Tensor, batch_sizes: Optional[Tensor]) -> None: ... |
| |
| def get_expected_hidden_size(self, input: Tensor, batch_sizes: Optional[Tensor]) -> Tuple[int, int, int]: ... |
| |
| def check_hidden_size(self, hx: Tensor, expected_hidden_size: Tuple[int, int, int], msg: str = ...) -> None: ... |
| |
| def check_forward_args(self, input: Any, hidden: Any, batch_sizes: Optional[Tensor]) -> None: ... |
| |
| def permute_hidden(self, hx: Any, permutation: Any): ... |
| |
| def forward(self, input: Tensor, hx: Optional[Any] = ...) -> Any: ... |
| |
| @property |
| def all_weights(self) -> List[Parameter]: ... |
| |
| |
| class RNN(RNNBase): |
| def __init__(self, input_size: int, hidden_size: int, num_layers: int = ..., bias: bool = ..., |
| batch_first: bool = ..., dropout: float = ..., bidirectional: bool = ..., |
| nonlinearity: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, hx: Optional[Tensor] = ...) -> Tensor: ... |
| |
| |
| class LSTM(RNNBase): |
| def __init__(self, input_size: int, hidden_size: int, num_layers: int = ..., bias: bool = ..., |
| batch_first: bool = ..., dropout: float = ..., bidirectional: bool = ..., |
| nonlinearity: str = ...) -> None: ... |
| |
| def check_forward_args(self, input: Tensor, hidden: Tuple[Tensor, Tensor], |
| batch_sizes: Optional[Tensor]) -> None: ... |
| |
| def permute_hidden(self, hx: Tuple[Tensor, Tensor], permutation: Optional[Tensor]) -> Tuple[Tensor, Tensor]: ... |
| |
| def forward_impl(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]], batch_sizes: Optional[Tensor], |
| max_batch_size: int, sorted_indices: Optional[Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]: ... |
| |
| def forward_tensor(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = ...) -> Tuple[ |
| Tensor, Tuple[Tensor, Tensor]]: ... |
| |
| def forward_packed(self, input: Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]], |
| hx: Optional[Tuple[Tensor, Tensor]] = ...) -> Tuple[ |
| Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]], Tuple[Tensor, Tensor]]: ... |
| |
| def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = ...) -> Tuple[Tensor, Tuple[Tensor, Tensor]]: ... |
| |
| |
| class GRU(RNNBase): |
| def __init__(self, input_size: int, hidden_size: int, num_layers: int = ..., bias: bool = ..., |
| batch_first: bool = ..., dropout: float = ..., bidirectional: bool = ..., |
| nonlinearity: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, hx: Optional[Tensor] = ...) -> Tensor: ... |
| |
| |
| class RNNCellBase(Module): |
| input_size: int = ... |
| hidden_size: int = ... |
| bias: bool = ... |
| weight_ih: Parameter = ... |
| weight_hh: Parameter = ... |
| bias_ih: Parameter = ... |
| bias_hh: Parameter = ... |
| |
| def __init__(self, input_size: int, hidden_size: int, bias: bool, num_chunks: int) -> None: ... |
| |
| def check_forward_input(self, input: Tensor) -> None: ... |
| |
| def check_forward_hidden(self, input: Tensor, hx: Tensor, hidden_label: str = ...) -> None: ... |
| |
| def reset_parameters(self) -> None: ... |
| |
| |
| class RNNCell(RNNCellBase): |
| nonlinearity: str = ... |
| |
| def __init__(self, input_size: int, hidden_size: int, bias: bool = ..., nonlinearity: str = ...) -> None: ... |
| |
| def forward(self, input: Tensor, hx: Optional[Tensor] = ...) -> Tensor: ... |
| |
| |
| class LSTMCell(RNNCellBase): |
| def __init__(self, input_size: int, hidden_size: int, bias: bool = ...) -> None: ... |
| |
| def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = ...) -> Tuple[Tensor, Tensor]: ... |
| |
| |
| class GRUCell(RNNCellBase): |
| def __init__(self, input_size: int, hidden_size: int, bias: bool = ...) -> None: ... |
| |
| def forward(self, input: Tensor, hx: Optional[Tensor] = ...) -> Tensor: ... |