blob: 371c1c354a19e00c61ba8281c639d5f6655ecf6d [file] [log] [blame]
from ..parameter import Parameter
from .module import Module
from typing import Any, Optional, Tuple, List
from ... import Tensor
def apply_permutation(tensor: Tensor, permutation: Tensor, dim: int = ...) -> Tensor: ...
class RNNBase(Module):
mode: str = ...
input_size: int = ...
hidden_size: int = ...
num_layers: int = ...
bias: bool = ...
batch_first: bool = ...
dropout: float = ...
bidirectional: bool = ...
def __init__(self, mode: str, input_size: int, hidden_size: int, num_layers: int = ..., bias: bool = ...,
batch_first: bool = ..., dropout: float = ..., bidirectional: bool = ...) -> None: ...
def flatten_parameters(self) -> List[Parameter]: ...
def reset_parameters(self) -> None: ...
def get_flat_weights(self): ...
def check_input(self, input: Tensor, batch_sizes: Optional[Tensor]) -> None: ...
def get_expected_hidden_size(self, input: Tensor, batch_sizes: Optional[Tensor]) -> Tuple[int, int, int]: ...
def check_hidden_size(self, hx: Tensor, expected_hidden_size: Tuple[int, int, int], msg: str = ...) -> None: ...
def check_forward_args(self, input: Any, hidden: Any, batch_sizes: Optional[Tensor]) -> None: ...
def permute_hidden(self, hx: Any, permutation: Any): ...
def forward(self, input: Tensor, hx: Optional[Any] = ...) -> Any: ...
@property
def all_weights(self) -> List[Parameter]: ...
class RNN(RNNBase):
def __init__(self, input_size: int, hidden_size: int, num_layers: int = ..., bias: bool = ...,
batch_first: bool = ..., dropout: float = ..., bidirectional: bool = ...,
nonlinearity: str = ...) -> None: ...
def forward(self, input: Tensor, hx: Optional[Tensor] = ...) -> Tensor: ...
class LSTM(RNNBase):
def __init__(self, input_size: int, hidden_size: int, num_layers: int = ..., bias: bool = ...,
batch_first: bool = ..., dropout: float = ..., bidirectional: bool = ...,
nonlinearity: str = ...) -> None: ...
def check_forward_args(self, input: Tensor, hidden: Tuple[Tensor, Tensor],
batch_sizes: Optional[Tensor]) -> None: ...
def permute_hidden(self, hx: Tuple[Tensor, Tensor], permutation: Optional[Tensor]) -> Tuple[Tensor, Tensor]: ...
def forward_impl(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]], batch_sizes: Optional[Tensor],
max_batch_size: int, sorted_indices: Optional[Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]]: ...
def forward_tensor(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = ...) -> Tuple[
Tensor, Tuple[Tensor, Tensor]]: ...
def forward_packed(self, input: Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]],
hx: Optional[Tuple[Tensor, Tensor]] = ...) -> Tuple[
Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]], Tuple[Tensor, Tensor]]: ...
def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = ...) -> Tuple[Tensor, Tuple[Tensor, Tensor]]: ...
class GRU(RNNBase):
def __init__(self, input_size: int, hidden_size: int, num_layers: int = ..., bias: bool = ...,
batch_first: bool = ..., dropout: float = ..., bidirectional: bool = ...,
nonlinearity: str = ...) -> None: ...
def forward(self, input: Tensor, hx: Optional[Tensor] = ...) -> Tensor: ...
class RNNCellBase(Module):
input_size: int = ...
hidden_size: int = ...
bias: bool = ...
weight_ih: Parameter = ...
weight_hh: Parameter = ...
bias_ih: Parameter = ...
bias_hh: Parameter = ...
def __init__(self, input_size: int, hidden_size: int, bias: bool, num_chunks: int) -> None: ...
def check_forward_input(self, input: Tensor) -> None: ...
def check_forward_hidden(self, input: Tensor, hx: Tensor, hidden_label: str = ...) -> None: ...
def reset_parameters(self) -> None: ...
class RNNCell(RNNCellBase):
nonlinearity: str = ...
def __init__(self, input_size: int, hidden_size: int, bias: bool = ..., nonlinearity: str = ...) -> None: ...
def forward(self, input: Tensor, hx: Optional[Tensor] = ...) -> Tensor: ...
class LSTMCell(RNNCellBase):
def __init__(self, input_size: int, hidden_size: int, bias: bool = ...) -> None: ...
def forward(self, input: Tensor, hx: Optional[Tuple[Tensor, Tensor]] = ...) -> Tuple[Tensor, Tensor]: ...
class GRUCell(RNNCellBase):
def __init__(self, input_size: int, hidden_size: int, bias: bool = ...) -> None: ...
def forward(self, input: Tensor, hx: Optional[Tensor] = ...) -> Tensor: ...