blob: ba2dfa73ab4a3e3392e9ff01fcdaa2ed60ce67f1 [file] [log] [blame]
import torch
from torch.autograd.function import Function
class SyncBatchNorm(Function):
@staticmethod
def forward(self, input, weight, bias, running_mean, running_var, eps, momentum, process_group, world_size):
input = input.contiguous()
# calcualte mean/invstd for input.
mean, invstd = torch.batch_norm_stats(input, eps)
mean_all = torch.empty(world_size, mean.size(0), dtype=mean.dtype, device=mean.device)
invstd_all = torch.empty(world_size, invstd.size(0), dtype=invstd.dtype, device=invstd.device)
mean_l = list(mean_all.unbind(0))
invstd_l = list(invstd_all.unbind(0))
# using all_gather instead of all reduce so we can calculate mean/var in one go
mean_all_reduce = torch.distributed.all_gather(mean_l, mean, process_group, async_op=True)
invstd_all_reduce = torch.distributed.all_gather(invstd_l, invstd, process_group, async_op=True)
# wait on the async communication to finish
mean_all_reduce.wait()
invstd_all_reduce.wait()
# calcualte global mean & invstd
mean, invstd = torch.batch_norm_gather_stats(
input,
mean_all,
invstd_all,
running_mean,
running_var,
momentum,
eps,
int(input.numel() / input.size(1))
)
self.save_for_backward(input, weight, mean, invstd)
self.process_group = process_group
self.world_size = world_size
# apply element-wise normalization
out = torch.batch_norm_elemt(input, weight, bias, mean, invstd, eps)
return out
@staticmethod
def backward(self, grad_output):
grad_output = grad_output.contiguous()
saved_input, weight, mean, invstd = self.saved_tensors
grad_input = grad_weight = grad_bias = None
process_group = self.process_group
world_size = self.world_size
# calculate local stats as well as grad_weight / grad_bias
mean_dy, mean_dy_xmu, grad_weight, grad_bias = torch.batch_norm_backward_reduce(
grad_output,
saved_input,
mean,
invstd,
self.needs_input_grad[0],
self.needs_input_grad[1],
self.needs_input_grad[2]
)
if self.needs_input_grad[0]:
# synchronizing stats used to calculate input gradient.
# TODO: move div_ into batch_norm_backward_elemt kernel
mean_dy_all_reduce = torch.distributed.all_reduce(
mean_dy, torch.distributed.ReduceOp.SUM, process_group, async_op=True)
mean_dy_xmu_all_reduce = torch.distributed.all_reduce(
mean_dy_xmu, torch.distributed.ReduceOp.SUM, process_group, async_op=True)
# wait on the async communication to finish
mean_dy_all_reduce.wait()
mean_dy_xmu_all_reduce.wait()
mean_dy.div_(world_size)
mean_dy_xmu.div_(world_size)
# backward pass for gradient calculation
grad_input = torch.batch_norm_backward_elemt(
grad_output,
saved_input,
mean,
invstd,
weight,
mean_dy,
mean_dy_xmu
)
# synchronizing of grad_weight / grad_bias is not needed as distributed
# training would handle all reduce.
if weight is None or not self.needs_input_grad[1]:
grad_weight = None
if weight is None or not self.needs_input_grad[2]:
grad_bias = None
return grad_input, grad_weight, grad_bias, None, None, None, None, None, None