blob: b5f2267fd5bbef4eaacf06c9e5584d5d4b4ca19e [file] [log] [blame]
# Owner(s): ["oncall: distributed"]
import unittest
from collections import deque
from contextlib import ContextDecorator
from copy import deepcopy
import torch
import torch.nn as nn
from torch.distributed._composable import checkpoint
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (
instantiate_parametrized_tests,
parametrize,
run_tests,
TestCase,
)
class MemoryDelta(ContextDecorator):
def __init__(self, device: torch.device):
self.device: torch.device = device
self.active_memory_enter: int = 0
self.active_memory_exit: int = 0
def __enter__(self):
self.active_memory_enter = (
torch.cuda.memory_stats()["active_bytes.all.current"]
if self.device.type == "cuda"
else 0
)
return self
def __exit__(self, *exc):
self.active_memory_exit = (
torch.cuda.memory_stats()["active_bytes.all.current"]
if self.device.type == "cuda"
else 0
)
def delta(self) -> int:
return self.active_memory_exit - self.active_memory_enter
class ToyModel(nn.Module):
def __init__(self):
super().__init__()
self.l1 = nn.Linear(100, 100)
self.seq = nn.Sequential(
nn.ReLU(),
nn.Linear(100, 100),
nn.ReLU(),
)
def forward(self, x):
return self.seq(self.l1(x))
class RandomModel(nn.Module):
def __init__(self):
super().__init__()
self.p = nn.Parameter(torch.randn(100, 100))
def forward(self, x):
y = torch.matmul(self.p, torch.randn(100, 100, device=self.p.device))
return torch.matmul(x, y)
class TestCheckpoint(TestCase):
def _get_graph_size(self, out: torch.Tensor) -> int:
q = deque([out.grad_fn])
num_functions = 0
while len(q):
fn = q.pop()
num_functions += 1
for next_fn, _ in fn.next_functions:
if next_fn:
q.append(next_fn)
return num_functions
def _test_tensor_only(
self,
net: nn.Module,
x: torch.Tensor,
use_reentrant: bool,
) -> None:
x1 = x.clone()
x2 = x.clone()
x1.requires_grad = True
x2.requires_grad = True
net1 = net
net2 = deepcopy(net)
# no checkpoint
with MemoryDelta(x.device) as mem1:
loss1 = net1(x1).sum()
graph_size1 = self._get_graph_size(loss1)
loss1.backward()
# with checkpoint
checkpoint(net2.seq, use_reentrant=use_reentrant)
with MemoryDelta(x.device) as mem2:
loss2 = net2(x2).sum()
graph_size2 = self._get_graph_size(loss2)
loss2.backward()
if use_reentrant:
self.assertTrue(graph_size2 < graph_size1)
if x.is_cuda:
self.assertTrue(mem2.delta() < mem1.delta())
for p1, p2 in zip(net1.parameters(), net2.parameters()):
self.assertEqual(p1.grad, p2.grad)
@parametrize("use_reentrant", [True, False])
def test_tensor_only_cpu(self, use_reentrant: bool):
x = torch.randn(20, 100)
net = ToyModel()
self._test_tensor_only(net, x, use_reentrant)
@unittest.skipIf(not TEST_CUDA, "no cuda")
@parametrize("use_reentrant", [True, False])
def test_tensor_only_gpu(self, use_reentrant: bool):
x = torch.randn(20, 100, device="cuda:0")
net = ToyModel().to("cuda:0")
self._test_tensor_only(net, x, use_reentrant)
def test_random_cpu(self):
x1 = torch.randn(20, 100, requires_grad=True)
x2 = x1.clone()
net1 = RandomModel()
net2 = deepcopy(net1)
cpu_rng_state = torch.get_rng_state()
net1(x1).sum().backward()
torch.set_rng_state(cpu_rng_state)
checkpoint(net2)(x2).sum().backward()
for p1, p2 in zip(net1.parameters(), net2.parameters()):
self.assertEqual(p1.grad, p2.grad)
instantiate_parametrized_tests(TestCheckpoint)
if __name__ == "__main__":
run_tests()