|  | #ifndef CAFFE2_OPERATORS_LSTM_UNIT_OP_H_ | 
|  | #define CAFFE2_OPERATORS_LSTM_UNIT_OP_H_ | 
|  |  | 
|  | #include "caffe2/core/context.h" | 
|  | #include "caffe2/core/operator.h" | 
|  | #include "caffe2/perfkernels/lstm_unit_cpu.h" | 
|  | #include "caffe2/utils/conversions.h" | 
|  |  | 
|  | namespace caffe2 { | 
|  | namespace detail { | 
|  | template <typename T, typename Context> | 
|  | inline void LSTMUnit( | 
|  | const int N, | 
|  | const int D, | 
|  | const int t, | 
|  | const T* H_prev, | 
|  | const T* C_prev, | 
|  | const T* X, | 
|  | const int32_t* seqLengths, | 
|  | const bool drop_states, | 
|  | T* C, | 
|  | T* H, | 
|  | const float forget_bias, | 
|  | Context* /*context*/) { | 
|  | LstmUnitCpu<T>( | 
|  | N, D, t, H_prev, C_prev, X, seqLengths, drop_states, C, H, forget_bias); | 
|  | } | 
|  |  | 
|  | template <typename T, typename Context> | 
|  | inline void LSTMUnitGradient( | 
|  | int N, | 
|  | int D, | 
|  | int t, | 
|  | const T* C_prev, | 
|  | const T* X, | 
|  | const int32_t* seqLengths, | 
|  | const T* C, | 
|  | const T* H, | 
|  | const T* C_diff, | 
|  | const T* H_diff, | 
|  | bool drop_states, | 
|  | T* H_prev_diff, | 
|  | T* C_prev_diff, | 
|  | T* X_diff, | 
|  | const float forget_bias, | 
|  | Context* /*context*/) { | 
|  | LstmUnitGradientCpu<T>( | 
|  | N, | 
|  | D, | 
|  | t, | 
|  | C_prev, | 
|  | X, | 
|  | seqLengths, | 
|  | C, | 
|  | H, | 
|  | C_diff, | 
|  | H_diff, | 
|  | drop_states, | 
|  | H_prev_diff, | 
|  | C_prev_diff, | 
|  | X_diff, | 
|  | forget_bias); | 
|  | } | 
|  |  | 
|  | } // namespace detail | 
|  |  | 
|  | template <typename Context> | 
|  | class LSTMUnitOp : public Operator<Context> { | 
|  | public: | 
|  | explicit LSTMUnitOp(const OperatorDef& operator_def, Workspace* ws) | 
|  | : Operator<Context>(operator_def, ws), | 
|  | forget_bias_(static_cast<float>( | 
|  | this->template GetSingleArgument<float>("forget_bias", 0.0))), | 
|  | sequence_lengths_( | 
|  | this->template GetSingleArgument<bool>("sequence_lengths", true)), | 
|  | drop_states_( | 
|  | this->template GetSingleArgument<bool>("drop_states", false)) {} | 
|  | USE_OPERATOR_CONTEXT_FUNCTIONS; | 
|  | using Operator<Context>::Operator; | 
|  |  | 
|  | template <typename T> | 
|  | bool DoRunWithType() { | 
|  | // handle potentially-missing sequence lengths input | 
|  | const size_t TIMESTEP = SEQ_LENGTHS + (sequence_lengths_ ? 1 : 0); | 
|  |  | 
|  | // Extract N | 
|  | const auto N = Input(CELL_T_M_1).size(1); | 
|  |  | 
|  | // Gates: 1xNxG | 
|  | const auto G = Input(GATES).size(2); | 
|  | const auto D = Input(CELL_T_M_1).size(2); | 
|  |  | 
|  | CAFFE_ENFORCE_EQ(4 * D, G); | 
|  | const auto* H_prev = Input(HIDDEN_T_M_1).template data<T>(); | 
|  | const auto* C_prev = Input(CELL_T_M_1).template data<T>(); | 
|  | const auto* X = Input(GATES).template data<T>(); | 
|  |  | 
|  | const int32_t* seqLengths = nullptr; | 
|  | if (sequence_lengths_) { | 
|  | CAFFE_ENFORCE_EQ(Input(SEQ_LENGTHS).numel(), N); | 
|  | seqLengths = Input(SEQ_LENGTHS).template data<int32_t>(); | 
|  | } | 
|  |  | 
|  | const auto t = static_cast<OperatorBase*>(this) | 
|  | ->Input<Tensor>(TIMESTEP, CPU) | 
|  | .template data<int32_t>()[0]; | 
|  | Output(CELL_T)->ResizeLike(Input(CELL_T_M_1)); | 
|  | auto* C = Output(CELL_T)->template mutable_data<T>(); | 
|  | Output(HIDDEN_T)->ResizeLike(Input(CELL_T_M_1)); | 
|  | auto* H = Output(HIDDEN_T)->template mutable_data<T>(); | 
|  | detail::LSTMUnit<T, Context>( | 
|  | N, | 
|  | D, | 
|  | t, | 
|  | H_prev, | 
|  | C_prev, | 
|  | X, | 
|  | seqLengths, | 
|  | drop_states_, | 
|  | C, | 
|  | H, | 
|  | forget_bias_, | 
|  | &context_); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RunOnDevice() override { | 
|  | return DoRunWithType<float>(); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | INPUT_TAGS(HIDDEN_T_M_1, CELL_T_M_1, GATES, SEQ_LENGTHS); | 
|  | // additional input tags are determined dynamically based on whether | 
|  | // sequence_lengths is present. | 
|  | OUTPUT_TAGS(HIDDEN_T, CELL_T); | 
|  |  | 
|  | float forget_bias_; | 
|  | bool sequence_lengths_; | 
|  |  | 
|  | private: | 
|  | bool drop_states_; | 
|  | }; | 
|  |  | 
|  | template <typename Context> | 
|  | class LSTMUnitGradientOp : public Operator<Context> { | 
|  | public: | 
|  | template <class... Args> | 
|  | explicit LSTMUnitGradientOp(Args&&... args) | 
|  | : Operator<Context>(std::forward<Args>(args)...), | 
|  | forget_bias_(static_cast<float>( | 
|  | this->template GetSingleArgument<float>("forget_bias", 0.0))), | 
|  | sequence_lengths_( | 
|  | this->template GetSingleArgument<bool>("sequence_lengths", true)), | 
|  | drop_states_( | 
|  | this->template GetSingleArgument<bool>("drop_states", false)) {} | 
|  | USE_OPERATOR_CONTEXT_FUNCTIONS; | 
|  |  | 
|  | template <typename T> | 
|  | bool DoRunWithType() { | 
|  | // handle potentially-missing sequence lengths input | 
|  | const size_t inputOffset = SEQ_LENGTHS + (sequence_lengths_ ? 1 : 0); | 
|  | const size_t TIMESTEP = inputOffset; | 
|  | const size_t HIDDEN_T = inputOffset + 1; | 
|  | const size_t CELL_T = inputOffset + 2; | 
|  | const size_t HIDDEN_T_GRAD = inputOffset + 3; | 
|  | const size_t CELL_T_GRAD = inputOffset + 4; | 
|  |  | 
|  | // Extract N | 
|  | const auto N = Input(CELL_T_M_1).size(1); | 
|  |  | 
|  | // Gates: 1xNxG | 
|  | const auto G = Input(GATES).size(2); | 
|  | const auto D = Input(CELL_T_M_1).size(2); | 
|  |  | 
|  | CAFFE_ENFORCE_EQ(4 * D, G); | 
|  | const auto* C_prev = Input(CELL_T_M_1).template data<T>(); | 
|  | const auto* X = Input(GATES).template data<T>(); | 
|  | const auto t = static_cast<OperatorBase*>(this) | 
|  | ->Input<Tensor>(TIMESTEP, CPU) | 
|  | .template data<int32_t>()[0]; | 
|  | const auto* C = Input(CELL_T).template data<T>(); | 
|  | const auto* H = Input(HIDDEN_T).template data<T>(); | 
|  | const auto* C_diff = Input(CELL_T_GRAD).template data<T>(); | 
|  | const auto* H_diff = Input(HIDDEN_T_GRAD).template data<T>(); | 
|  |  | 
|  | const int32_t* seqLengths = nullptr; | 
|  | if (sequence_lengths_) { | 
|  | CAFFE_ENFORCE_EQ(Input(SEQ_LENGTHS).numel(), N); | 
|  | seqLengths = Input(SEQ_LENGTHS).template data<int32_t>(); | 
|  | } | 
|  |  | 
|  | Output(HIDDEN_T_M_1_GRAD)->ResizeLike(Input(HIDDEN_T_M_1)); | 
|  | auto* H_prev_diff = Output(HIDDEN_T_M_1_GRAD)->template mutable_data<T>(); | 
|  | Output(CELL_T_M_1_GRAD)->ResizeLike(Input(CELL_T_M_1)); | 
|  | auto* C_prev_diff = Output(CELL_T_M_1_GRAD)->template mutable_data<T>(); | 
|  | Output(GATES_GRAD)->ResizeLike(Input(GATES)); | 
|  | auto* X_diff = Output(GATES_GRAD)->template mutable_data<T>(); | 
|  |  | 
|  | detail::LSTMUnitGradient<T, Context>( | 
|  | N, | 
|  | D, | 
|  | t, | 
|  | C_prev, | 
|  | X, | 
|  | seqLengths, | 
|  | C, | 
|  | H, | 
|  | C_diff, | 
|  | H_diff, | 
|  | drop_states_, | 
|  | H_prev_diff, | 
|  | C_prev_diff, | 
|  | X_diff, | 
|  | forget_bias_, | 
|  | &context_); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool RunOnDevice() override { | 
|  | return DoRunWithType<float>(); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | INPUT_TAGS(HIDDEN_T_M_1, CELL_T_M_1, GATES, SEQ_LENGTHS); | 
|  | // additional input tags are determined dynamically based on whether | 
|  | // sequence_lengths is present. | 
|  | OUTPUT_TAGS(HIDDEN_T_M_1_GRAD, CELL_T_M_1_GRAD, GATES_GRAD); | 
|  |  | 
|  | float forget_bias_; | 
|  | bool sequence_lengths_; | 
|  |  | 
|  | private: | 
|  | bool drop_states_; | 
|  | }; | 
|  | } // namespace caffe2 | 
|  |  | 
|  | #endif // CAFFE2_OPERATORS_LSTM_UNIT_OP_H_ |