blob: f2d557faca05cdb9787f502494fc22b0cdc8d98c [file] [log] [blame]
import torch
from torch import sparse
import itertools
import random
import unittest
from common import TestCase, run_tests
from common_cuda import TEST_CUDA
from test_torch import TestTorch
from numbers import Number
def cpu_only(inner):
def outer(self, *args, **kwargs):
if self.is_cuda:
raise unittest.SkipTest("Test is CPU-only")
inner(self, *args, **kwargs)
return outer
def cuda_only(inner):
def outer(self, *args, **kwargs):
if not self.is_cuda:
raise unittest.SkipTest("Test is GPU-only")
inner(self, *args, **kwargs)
return outer
class TestSparse(TestCase):
def setUp(self):
# These parameters control the various ways we can run the test.
# We will subclass and override this method to implement CUDA
# tests
self.is_cuda = False
self.is_uncoalesced = False
self.IndexTensor = torch.LongTensor
self.ValueTensor = torch.DoubleTensor
self.SparseTensor = torch.sparse.DoubleTensor
super(TestSparse, self).setUp()
def _gen_sparse(self, d, nnz, with_size):
# TODO: Consider implementing this in the CUDA case by directly
# performing the operations on the GPU. You won't be able to
# use torch.rand/torch.randn in this case because they are
# CPU-only. If you do this, you can remove the is_cuda branch
# at the end.
#
# If you do this, be sure to update assert_uncoalesced too
if isinstance(with_size, Number):
with_size = [with_size] * d
if self.is_uncoalesced:
# We want to generate a tensor with a lot of uncoalesced
# entries to stress test whether or not we handle this
# (subtle) case correctly
v_size = [nnz * 2] + list(with_size[d:])
v = torch.randn(*v_size)
r = torch.rand(d, nnz)
# Repeat the indexes, so every position shows up twice
i = torch.cat([r, r], dim=1) * \
torch.Tensor(with_size[:d]).repeat(nnz * 2, 1).transpose(0, 1)
i = i.type(torch.LongTensor)
x = torch.sparse.DoubleTensor(i, v, torch.Size(with_size))
self.assert_uncoalesced(x)
else:
# Generate a sparse tensor with d sparse dimensions; the
# rest the dimensions with_size[d:] are dense.
v_size = [nnz] + list(with_size[d:])
v = torch.randn(*v_size)
i = torch.rand(d, nnz) * \
torch.Tensor(with_size[:d]).repeat(nnz, 1).transpose(0, 1)
i = i.type(torch.LongTensor)
x = torch.sparse.DoubleTensor(i, v, torch.Size(with_size))
if self.is_cuda:
return x.cuda(), i.cuda(), v.cuda()
else:
return x, i.clone(), v.clone()
def assert_uncoalesced(self, x):
"""
Test if a CPU tensor is uncoalesced. This is used to ensure
correctness of the uncoalesced tensor generation algorithm.
"""
assert not x.is_coalesced()
# Strategy: construct a new sparse tensor with the raw value
# field overwritten to a tensor of ones, coalesce it, and then
# check if any value entries are > 1 (which indicates that the
# original was uncoalesced.)
i = x._indices().clone()
v = x._values().clone().fill_(1)
y = torch.sparse.DoubleTensor(i, v, x.size())
z = self.safeCoalesce(y)
assert (z._values() > 1).sum() > 0
def randn(self, *args, **kwargs):
"""
Variant of torch.randn that also works in the TEST_CUDA case.
"""
# TODO: Put this in torch.cuda.randn
return self.ValueTensor(*args, **kwargs).normal_()
def test_basic(self):
x, i, v = self._gen_sparse(3, 10, 100)
self.assertEqual(i, x._indices())
self.assertEqual(v, x._values())
x, i, v = self._gen_sparse(3, 10, [100, 100, 100])
self.assertEqual(i, x._indices())
self.assertEqual(v, x._values())
self.assertEqual(x.ndimension(), 3)
self.assertEqual(self.safeCoalesce(x)._nnz(), 10)
for i in range(3):
self.assertEqual(x.size(i), 100)
# Make sure that coalesce handles duplicate indices correctly
i = self.IndexTensor([[9, 0, 0, 0, 8, 1, 1, 1, 2, 7, 2, 2, 3, 4, 6, 9]])
v = self.ValueTensor([[idx**2, idx] for idx in range(i.size(1))])
x = self.SparseTensor(i, v, torch.Size([10, 2]))
self.assertEqual(self.safeCoalesce(x)._nnz(), 9)
# Make sure we can access empty indices / values
x = self.SparseTensor()
self.assertEqual(x._indices().numel(), 0)
self.assertEqual(x._values().numel(), 0)
def test_ctor_size_checks(self):
indices = self.IndexTensor([
[0, 0, 0],
[0, 3, 0],
[0, 0, 0],
[0, 0, 0],
])
values = self.ValueTensor([2, 1, 3, 4])
# indices inconsistent with size
self.assertRaises(
RuntimeError,
lambda: self.SparseTensor(indices, values, torch.Size([2, 1, 1])))
# values inconsistent with size
values = self.ValueTensor([
[2, 1, 2, 1],
[1, 0, 5, 2],
])
self.assertRaises(
RuntimeError,
lambda: self.SparseTensor(indices, values, torch.Size([2, 4, 2, 1])))
def test_to_dense(self):
i = self.IndexTensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
v = self.ValueTensor([2, 1, 3, 4])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5]))
res = self.ValueTensor([
[[2, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[1, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]],
[[0, 3, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 4]],
])
x.to_dense() # Tests double to_dense for memory corruption
x.to_dense()
x.to_dense()
self.assertEqual(res, x.to_dense())
self.assertEqual(res, self.safeToDense(x))
def test_shared(self):
i = self.IndexTensor([[2]])
v = self.ValueTensor([5])
x = self.SparseTensor(i, v, torch.Size([3]))
v[0] = 6
self.assertEqual(self.ValueTensor([0, 0, 6]), self.safeToDense(x))
i[0][0] = 0
self.assertEqual(self.ValueTensor([6, 0, 0]), self.safeToDense(x))
def test_to_dense_hybrid(self):
i = self.IndexTensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
])
v = self.ValueTensor([[2, 3], [1, 2], [3, 4], [4, 5]])
x = self.SparseTensor(i, v, torch.Size([3, 4, 2]))
res = self.ValueTensor([
[[2, 3],
[0, 0],
[0, 0],
[0, 0]],
[[1, 2],
[0, 0],
[0, 0],
[0, 0]],
[[3, 4],
[0, 0],
[0, 0],
[4, 5]],
])
x.to_dense() # Tests double to_dense for memory corruption
x.to_dense()
x.to_dense()
self.assertEqual(res, x.to_dense())
self.assertEqual(res, self.safeToDense(x))
def test_contig(self):
i = self.IndexTensor([
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
])
v = self.ValueTensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
x = self.SparseTensor(i, v, torch.Size([100, 100]))
exp_i = self.IndexTensor([
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
])
exp_v = self.ValueTensor([2, 1, 6, 4, 10, 3, 5, 9, 8, 7])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
i = self.IndexTensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
])
v = self.ValueTensor([3, 2, 4, 1])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5]))
exp_i = self.IndexTensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
exp_v = self.ValueTensor([2, 1, 3, 4])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
# Duplicate indices
i = self.IndexTensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
])
v = self.ValueTensor([3, 2, 4, 1])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5]))
exp_i = self.IndexTensor([
[0, 2],
[0, 3],
[0, 4],
])
exp_v = self.ValueTensor([6, 4])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
def test_contig_hybrid(self):
i = self.IndexTensor([
[1, 0, 35, 14, 39, 6, 71, 66, 40, 27],
[92, 31, 62, 50, 22, 65, 89, 74, 56, 34],
])
v = self.ValueTensor([
[1, 2], [2, 3], [3, 4], [4, 5], [5, 6],
[6, 7], [7, 8], [8, 9], [9, 10], [10, 11],
])
x = self.SparseTensor(i, v, torch.Size([100, 100, 2]))
exp_i = self.IndexTensor([
[0, 1, 6, 14, 27, 35, 39, 40, 66, 71],
[31, 92, 65, 50, 34, 62, 22, 56, 74, 89],
])
exp_v = self.ValueTensor([
[2, 3], [1, 2], [6, 7], [4, 5], [10, 11],
[3, 4], [5, 6], [9, 10], [8, 9], [7, 8],
])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
i = self.IndexTensor([
[2, 0, 2, 1],
[0, 0, 3, 0],
[1, 0, 4, 0],
])
v = self.ValueTensor([[3, 3, 3], [2, 2, 2], [4, 4, 4], [1, 1, 1]])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5, 3]))
exp_i = self.IndexTensor([
[0, 1, 2, 2],
[0, 0, 0, 3],
[0, 0, 1, 4],
])
exp_v = self.ValueTensor([[2, 2, 2], [1, 1, 1], [3, 3, 3], [4, 4, 4]])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
# Duplicate indices
i = self.IndexTensor([
[0, 0, 2, 0],
[0, 0, 3, 0],
[0, 0, 4, 0],
])
v = self.ValueTensor([[3, 2, 3], [2, 1, 1], [4, 3, 4], [1, 1, 1]])
x = self.SparseTensor(i, v, torch.Size([3, 4, 5, 3]))
exp_i = self.IndexTensor([
[0, 2],
[0, 3],
[0, 4],
])
exp_v = self.ValueTensor([[6, 4, 5], [4, 3, 4]])
x = self.safeCoalesce(x)
self.assertEqual(exp_i, x._indices())
self.assertEqual(exp_v, x._values())
def test_clone(self):
x, _, _ = self._gen_sparse(4, 20, 5)
if self.is_uncoalesced:
self.assertFalse(x.is_coalesced())
y = x.clone()
self.assertFalse(y.is_coalesced())
x = x.coalesce()
self.assertTrue(x.is_coalesced())
y = x.clone()
self.assertTrue(y.is_coalesced())
@cuda_only
def test_cuda_empty(self):
x = torch.sparse.FloatTensor(2, 3, 4)
y = x.cuda(0)
self.assertEqual(x._dimI(), y._dimI())
self.assertEqual(x._dimV(), y._dimV())
x = y.cpu()
self.assertEqual(y._dimI(), x._dimI())
self.assertEqual(y._dimV(), x._dimV())
def test_transpose(self):
x = self._gen_sparse(4, 20, 5)[0]
y = self.safeToDense(x)
for i, j in itertools.combinations(range(4), 2):
x = x.transpose_(i, j)
y = y.transpose(i, j)
self.assertEqual(self.safeToDense(x), y)
x = x.transpose(i, j)
y = y.transpose(i, j)
self.assertEqual(self.safeToDense(x), y)
def test_transpose_coalesce_invariant(self):
# If a sparse tensor is coalesced, its transpose should be the same
# If a sparse tensor is uncoalesed, its transpose should be the same
x_coalesced = self._gen_sparse(2, 3, 4)[0].coalesce()
x_indices = x_coalesced._indices()
x_values = x_coalesced._values()
y_uncoalesced = self.SparseTensor(
torch.cat([x_indices, x_indices], dim=1),
torch.cat([x_values, x_values]),
x_coalesced.size())
self.assertTrue(x_coalesced.is_coalesced())
self.assertFalse(y_uncoalesced.is_coalesced())
self.assertTrue(x_coalesced.transpose(0, 1).is_coalesced())
self.assertFalse(y_uncoalesced.transpose(0, 1).is_coalesced())
x_coalesced.transpose_(0, 1)
y_uncoalesced.transpose_(0, 1)
self.assertTrue(x_coalesced.is_coalesced())
self.assertFalse(y_uncoalesced.is_coalesced())
def test_t_empty(self):
x = self.SparseTensor(2, 3)
x.t_()
self.assertEqual(torch.Size([3, 2]), x.size())
self.assertEqual(0, x._indices().numel())
self.assertEqual(0, x._values().numel())
self.assertEqual(x._dimI(), 2)
self.assertEqual(x._dimV(), 0)
x = self.SparseTensor(2, 3)
y = x.t()
self.assertEqual(torch.Size([3, 2]), y.size())
self.assertEqual(0, y._indices().numel())
self.assertEqual(0, y._values().numel())
self.assertEqual(x._dimI(), 2)
self.assertEqual(x._dimV(), 0)
def test_add_zeros(self):
def test_shape(sparse_dims, sizes):
x, _, _ = self._gen_sparse(sparse_dims, 20, sizes)
zeros = torch.zeros(sizes, layout=torch.sparse_coo).to(x.device)
self.assertEqual(zeros + x, x)
self.assertEqual(x + zeros, x)
test_shape(1, [1])
test_shape(4, [3, 17, 19, 5])
test_shape(2, [3, 17, 19, 5])
@cpu_only
def test_mm(self):
def test_shape(di, dj, dk):
x, _, _ = self._gen_sparse(2, 20, [di, dj])
t = torch.randn(di, dk)
y = torch.randn(dj, dk)
alpha = random.random()
beta = random.random()
res = torch.addmm(alpha, t, beta, x, y)
expected = torch.addmm(alpha, t, beta, self.safeToDense(x), y)
self.assertEqual(res, expected)
res = torch.addmm(t, x, y)
expected = torch.addmm(t, self.safeToDense(x), y)
self.assertEqual(res, expected)
res = torch.mm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(res, expected)
test_shape(10, 100, 100)
test_shape(100, 1000, 200)
test_shape(64, 10000, 300)
@cpu_only
def test_saddmm(self):
def test_shape(di, dj, dk):
x = self._gen_sparse(2, 20, [di, dj])[0]
t = self._gen_sparse(2, 20, [di, dk])[0]
y = torch.randn(dj, dk)
alpha = random.random()
beta = random.random()
res = torch.saddmm(alpha, t, beta, x, y)
expected = torch.addmm(alpha, self.safeToDense(t), beta, self.safeToDense(x), y)
self.assertEqual(self.safeToDense(res), expected)
res = torch.saddmm(t, x, y)
expected = torch.addmm(self.safeToDense(t), self.safeToDense(x), y)
self.assertEqual(self.safeToDense(res), expected)
res = torch.smm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(self.safeToDense(res), expected)
test_shape(7, 5, 3)
test_shape(1000, 100, 100)
test_shape(3000, 64, 300)
def test_dsmm(self):
def test_shape(di, dj, dk):
x = self._gen_sparse(2, 20, [di, dj])[0]
y = self.randn(dj, dk)
res = torch.dsmm(x, y)
expected = torch.mm(self.safeToDense(x), y)
self.assertEqual(res, expected)
test_shape(7, 5, 3)
test_shape(1000, 100, 100)
test_shape(3000, 64, 300)
def test_hsmm(self):
def test_shape(di, dj, dk):
x = self._gen_sparse(2, 20, [di, dj])[0]
y = self.randn(dj, dk)
res = torch.hsmm(x, y)
# TODO: use self.safeToDense(), but this triggers
# https://github.com/pytorch/pytorch/issues/3170
expected = torch.mm(x.to_dense(), y)
self.assertEqual(res.to_dense(), expected)
test_shape(7, 5, 3)
test_shape(1000, 100, 100)
test_shape(3000, 64, 300)
def _test_spadd_shape(self, shape_i, shape_v=None):
shape = shape_i + (shape_v or [])
x, _, _ = self._gen_sparse(len(shape_i), 10, shape)
y = self.randn(*shape)
r = random.random()
res = torch.add(y, r, x)
expected = y + r * self.safeToDense(x)
self.assertEqual(res, expected)
# Non contiguous dense tensor
s = list(shape)
s[0] = shape[-1]
s[-1] = shape[0]
y = self.randn(*s)
y.transpose_(0, len(s) - 1)
r = random.random()
res = torch.add(y, r, x)
expected = y + r * self.safeToDense(x)
self.assertEqual(res, expected)
def test_spadd(self):
self._test_spadd_shape([5, 6])
self._test_spadd_shape([10, 10, 10])
self._test_spadd_shape([50, 30, 20])
self._test_spadd_shape([5, 5, 5, 5, 5, 5])
def test_spadd_hybrid(self):
self._test_spadd_shape([5, 6], [2, 3])
self._test_spadd_shape([10, 10, 10], [3])
self._test_spadd_shape([50, 30, 20], [2])
self._test_spadd_shape([5, 5, 5, 5, 5, 5], [2])
def test_norm(self):
x, _, _ = self._gen_sparse(3, 10, 100)
y = x.coalesce()
self.assertEqual(x.norm(), y._values().norm())
def _test_basic_ops_shape(self, shape_i, shape_v=None):
shape = shape_i + (shape_v or [])
x1, _, _ = self._gen_sparse(len(shape_i), 9, shape)
x2, _, _ = self._gen_sparse(len(shape_i), 12, shape)
y1 = x1 + x2
y2 = x1.clone()
y2.add_(x2)
expected = self.safeToDense(x1) + self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 - x2
y2 = x1.clone()
y2.sub_(x2)
expected = self.safeToDense(x1) - self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 * x2
y2 = x1.clone()
y2.mul_(x2)
expected = self.safeToDense(x1) * self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 * 37.5
y2 = x1.clone()
y2.mul_(37.5)
expected = self.safeToDense(x1) * 37.5
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y1 = x1 / 37.5
y2 = x1.clone()
y2.div_(37.5)
expected = self.safeToDense(x1) / 37.5
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
# TODO: add back inplace support
y1 = x1 ** 2
y2 = x1.clone()
y2 = y2.pow(2)
expected = self.safeToDense(x1) ** 2
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
y = x1.clone()
y.zero_()
expected = torch.zeros(x1.size())
self.assertEqual(self.safeToDense(y), expected)
self.assertFalse(x1.is_coalesced())
y = x1.coalesce()
z = x1.coalesce()
self.assertFalse(x1.is_coalesced())
self.assertTrue(y.is_coalesced())
self.assertEqual(x1, y)
# check that coalesce is out of place
y._values().add_(1)
self.assertEqual(z._values() + 1, y._values())
def test_basic_ops(self):
self._test_basic_ops_shape([5, 6])
self._test_basic_ops_shape([10, 10, 10])
self._test_basic_ops_shape([50, 30, 20])
self._test_basic_ops_shape([5, 5, 5, 5, 5, 5])
def test_basic_ops_hybrid(self):
self._test_basic_ops_shape([5, 6], [2, 3])
self._test_basic_ops_shape([10, 10, 10], [3])
self._test_basic_ops_shape([50, 30, 20], [2])
self._test_basic_ops_shape([5, 5, 5, 5, 5, 5], [2])
def _test_sparse_mask_shape(self, shape_i, shape_v=None):
shape = shape_i + (shape_v or [])
x1, _, _ = self._gen_sparse(len(shape_i), 9, shape)
x2, _, _ = self._gen_sparse(len(shape_i), 12, shape)
y1 = x1 + x2
y2 = x1.clone()
y2.add_(x2)
expected = self.safeToDense(x1) + self.safeToDense(x2)
self.assertEqual(self.safeToDense(y1), expected)
self.assertEqual(self.safeToDense(y2), expected)
def _test_sparse_mask_fixed(self):
i = self.IndexTensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
])
v = self.ValueTensor([1, 2, 3, 4])
x = self.SparseTensor(i, v, torch.Size([5, 4])).coalesce()
dense = self.ValueTensor([
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
[17, 18, 19, 20],
])
exp_v = self.ValueTensor([7, 14, 3, 20])
res = dense._sparse_mask(x)
expected = self.SparseTensor(i, exp_v, torch.Size([5, 4]))
self.assertEqual(res, expected)
def test_sparse_mask(self):
self._test_sparse_mask_fixed()
self._test_sparse_mask_shape([5, 6])
self._test_sparse_mask_shape([10, 10, 10])
self._test_sparse_mask_shape([50, 30, 20])
self._test_sparse_mask_shape([5, 5, 5, 5, 5, 5])
def _test_zeros(self, shape, out_shape_i, out_shape_v=None):
out_shape = out_shape_i + (out_shape_v or [])
for nnz in [9, 12]:
out, _, _ = self._gen_sparse(len(out_shape_i), nnz, out_shape)
torch.zeros(*shape, out=out)
self.assertEqual(tuple(out.size()), tuple(shape))
self.assertTrue(out._indices().numel() == out._values().numel() == 0)
self.assertEqual(out._nnz(), 0)
self.assertEqual(out._dimI(), len(shape))
self.assertEqual(out._dimV(), 0)
def test_zeros(self):
i_shapes = [2, 3, 4]
v_shapes = [3, 4, 5, 6]
for i_dim in range(1, len(i_shapes) + 1):
for v_dim in range(len(v_shapes) + 1):
self._test_zeros([2, 3, 4], i_shapes[:i_dim], v_shapes[:v_dim])
def _test_zeros_like(self, template_shape_i, template_shape_v=None):
template_shape_v = template_shape_v or []
template_shape = template_shape_i + template_shape_v
for nnz in [9, 12]:
t, _, _ = self._gen_sparse(len(template_shape_i), nnz, template_shape)
res = torch.zeros_like(t)
self.assertEqual(tuple(res.size()), tuple(template_shape))
self.assertTrue(res._indices().numel() == res._values().numel() == 0)
self.assertEqual(res._nnz(), 0)
self.assertEqual(res._dimI(), len(template_shape_i))
self.assertEqual(res._dimV(), len(template_shape_v))
def test_zeros_like(self):
i_shapes = [2, 3, 4]
v_shapes = [3, 4, 5, 6]
for i_dim in range(1, len(i_shapes) + 1):
for v_dim in range(len(v_shapes) + 1):
self._test_zeros_like(i_shapes[:i_dim], v_shapes[:v_dim])
def _test_sparse_mask_hybrid_fixed(self):
i = self.IndexTensor([
[1, 3, 0, 4],
[2, 1, 2, 3],
])
v = self.ValueTensor([[1, 2], [2, 3], [3, 4], [4, 5]])
# TODO: This is also testing that, if coalesce is a no-op,
# the indices don't get permuted. I don't know if we actually
# want to give this invariant.
x = self.SparseTensor(i, v, torch.Size([5, 4, 2])).coalesce()
dense = self.ValueTensor([
[[1, 3], [2, 2], [3, 3], [4, 2]],
[[5, 7], [6, 7], [7, 9], [8, 9]],
[[9, 2], [10, 4], [11, 1], [12, 3]],
[[13, 5], [14, 1], [15, 1], [16, 6]],
[[17, 7], [18, 2], [19, 7], [20, 1]],
])
res = dense._sparse_mask(x)
exp_v = self.ValueTensor([[7, 9], [14, 1], [3, 3], [20, 1]])
expected = self.SparseTensor(i, exp_v, torch.Size([5, 4, 2]))
self.assertEqual(res, expected)
def test_sparse_variable_methods(self):
# TODO: delete when tensor/variable are merged
from torch.autograd import Variable
i = self.IndexTensor([[0, 1, 1], [2, 0, 2]])
v = self.ValueTensor([3, 4, 5])
sparse_mat = self.SparseTensor(i, v, torch.Size([2, 3]))
sparse_var = Variable(sparse_mat)
to_test_one_arg = {
'zeros_like': lambda x: torch.zeros_like(x),
'transpose': lambda x: x.transpose(0, 1),
'transpose_': lambda x: x.transpose_(0, 1),
't': lambda x: x.t(),
't_': lambda x: x.t_(),
'div': lambda x: x.div(2),
'div_': lambda x: x.div_(2),
'pow': lambda x: x.pow(2),
'_nnz': lambda x: x._nnz(),
'is_coalesced': lambda x: x.is_coalesced(),
'coalesce': lambda x: x.coalesce(),
'to_dense': lambda x: x.to_dense(),
'_dimI': lambda x: x._dimI(),
'_dimV': lambda x: x._dimV(),
'norm': lambda x: x.norm(),
}
for test_name, test_fn in to_test_one_arg.items():
var1 = sparse_var.clone()
tensor1 = sparse_mat.clone()
out_var = test_fn(var1)
out_tensor = test_fn(tensor1)
if isinstance(out_tensor, int) or isinstance(out_tensor, bool):
if not isinstance(out_var, int) and not isinstance(out_var, bool):
check_var = out_var.data[0]
else:
check_var = out_var
self.assertEqual(out_var, out_tensor)
continue
# Assume output is variable / tensor
self.assertEqual(test_fn(var1).data, test_fn(tensor1),
test_name)
i = self.IndexTensor([[0, 0, 1], [1, 2, 1]])
v = self.ValueTensor([3, 3, 4])
sparse_mat2 = self.SparseTensor(i, v, torch.Size([2, 3]))
sparse_var2 = Variable(sparse_mat2)
to_test_two_arg = {
'sub': lambda x, y: x.sub(y),
'sub_': lambda x, y: x.sub_(y),
'mul': lambda x, y: x.mul(y),
'mul_': lambda x, y: x.mul_(y),
}
for test_name, test_fn in to_test_two_arg.items():
var1 = sparse_var.clone()
var2 = sparse_var2.clone()
tensor1 = sparse_mat.clone()
tensor2 = sparse_mat2.clone()
self.assertEqual(test_fn(var1, var2).data,
test_fn(tensor1, tensor2), test_name)
to_test_mixed = [
# test name, lambda expression, should_run_when_cuda
('sspaddmm', lambda sp, de: sp.sspaddmm(sp, de), False),
('sspaddmm_b', lambda sp, de: sp.sspaddmm(2, sp, de), False),
('sspaddmm_b_a', lambda sp, de: sp.sspaddmm(3, 2, sp, de), False),
('addmm', lambda sp, de: de.addmm(sp, de), True),
('addmm_', lambda sp, de: de.addmm(sp, de), True),
('mm', lambda sp, de: torch.mm(sp, de), True),
('mm_out', lambda sp, de: torch.mm(sp, de, out=de), True),
]
i = self.IndexTensor([[0, 0, 1, 2, 2], [1, 2, 1, 0, 1]])
v = self.ValueTensor([3, 3, 4, 1, 2])
sparse_mat = self.SparseTensor(i, v, torch.Size([3, 3]))
sparse_var = Variable(sparse_mat)
dense_mat = sparse_mat.to_dense().random_(0, 5)
dense_var = Variable(dense_mat)
for test_name, test_fn, test_cuda in to_test_mixed:
if sparse_var.is_cuda and not test_cuda:
continue
sp_var = sparse_var.clone()
de_var = dense_var.clone()
sp_mat = sparse_mat.clone()
de_mat = dense_mat.clone()
self.assertEqual(test_fn(sp_var, de_var).data,
test_fn(sp_mat, de_mat), test_name)
def test_sparse_mask_hybrid(self):
self._test_sparse_mask_hybrid_fixed()
self._test_sparse_mask_shape([5, 6], [2, 3])
self._test_sparse_mask_shape([10, 10, 10], [3])
self._test_sparse_mask_shape([50, 30, 20], [2])
self._test_sparse_mask_shape([5, 5, 5, 5, 5, 5], [2])
def test_sparse_add_coalesce(self):
i = self.IndexTensor([[1, 2, 1]])
v = self.ValueTensor([3, 4, 5])
x = self.SparseTensor(i, v, torch.Size([3]))
y = self.SparseTensor(i, v, torch.Size([3]))
z = x + y
self.assertFalse(z._indices().numel() != 2 and z.is_coalesced())
@cuda_only
def test_storage_not_null(self):
x = torch.cuda.sparse.FloatTensor(2)
self.assertNotEqual(x.get_device(), -1)
@cuda_only
@unittest.skipIf(torch.cuda.device_count() < 2, "only one GPU detected")
def test_same_gpu(self):
i = self.IndexTensor([[2]]).cuda(1)
v = self.ValueTensor([5]).cuda(1)
x = self.SparseTensor(i, v, torch.Size([3]), device=1)
self.assertEqual(x.get_device(), 1)
self.assertEqual(x._values().get_device(), 1)
self.assertEqual(x._indices().get_device(), 1)
x = self.SparseTensor(3, device=1)
self.assertEqual(x.get_device(), 1)
self.assertEqual(x._values().get_device(), 1)
self.assertEqual(x._indices().get_device(), 1)
v = self.ValueTensor([5]).cuda(0)
self.assertRaises(RuntimeError, lambda: self.SparseTensor(i, v, torch.Size([3])))
def _test_new_device(self, size, device):
with torch.cuda.device(device):
x = torch.cuda.sparse.DoubleTensor(*size)
self.assertEqual(x.get_device(), device)
x1 = x.new()
x2 = x.new(2, 3)
self.assertEqual(x1.get_device(), device)
self.assertEqual(x2.get_device(), device)
@cuda_only
def test_new_device_single_gpu(self):
self._test_new_device((), 0)
self._test_new_device((30, 20), 0)
self._test_new_device((30, 20, 10), 0)
@cuda_only
@unittest.skipIf(torch.cuda.device_count() < 2, "only one GPU detected")
def test_new_device_multi_gpu(self):
self._test_new_device((), 1)
self._test_new_device((30, 20), 1)
self._test_new_device((30, 20, 10), 1)
def test_new(self):
x, indices, values = self._gen_sparse(3, 10, 100)
if not x.is_cuda:
# CUDA sparse tensors currently requires the size to be
# specified if nDimV > 0
self.assertEqual(x.new(indices, values), x)
self.assertEqual(x.new(indices, values, x.size()), x)
@cpu_only # not really, but we only really want to run this once
def test_factory(self):
default_size = torch.Size([1, 3])
size = torch.Size([3, 3])
for include_size in [True, False]:
for use_tensor_idx in [True, False]:
for use_tensor_val in [True, False]:
for use_cuda in ([False] if not torch.cuda.is_available() else [True, False]):
# have to include size with cuda sparse tensors
include_size = include_size or use_cuda
dtype = torch.float64
long_dtype = torch.int64
device = torch.device('cpu') if not use_cuda else torch.device(torch.cuda.device_count() - 1)
indices = torch.tensor(([0], [2]), dtype=long_dtype) if use_tensor_idx else ([0], [2])
values = torch.tensor([1.], dtype=dtype) if use_tensor_val else 1.
if include_size:
sparse_tensor = torch.sparse_coo_tensor(indices, values, size, dtype=dtype,
device=device, requires_grad=True)
else:
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=dtype,
device=device, requires_grad=True)
self.assertEqual(indices, sparse_tensor._indices())
self.assertEqual(values, sparse_tensor._values())
self.assertEqual(size if include_size else default_size, sparse_tensor.size())
self.assertEqual(dtype, sparse_tensor.dtype)
if use_cuda:
self.assertEqual(device, sparse_tensor._values().device)
self.assertEqual(True, sparse_tensor.requires_grad)
def test_factory_size_check(self):
indices = self.IndexTensor([[1, 2], [0, 2]])
values = self.ValueTensor([.5, .5])
sizes = torch.Size([2, 3])
with self.assertRaisesRegex(RuntimeError, "sizes is inconsistent with indices"):
self.SparseTensor(indices, values, sizes)
indices = self.IndexTensor([[1, 2], [0, 2]])
values = self.ValueTensor([[1, 1, 1], [1, 1, 1]])
sizes = torch.Size([3, 3, 2])
with self.assertRaisesRegex(RuntimeError, "values and sizes are inconsistent"):
self.SparseTensor(indices, values, sizes)
def test_factory_empty_indices(self):
device = 'cuda' if self.is_cuda else 'cpu'
tensor = torch.sparse_coo_tensor([], [], torch.Size([]), device=device)
expected_indices = torch.tensor([], dtype=torch.long, device=device)
self.assertEqual(tensor._indices(), expected_indices)
@cpu_only
def test_factory_type_inference(self):
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=torch.float32))
self.assertEqual(torch.float32, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1.], dtype=torch.float64))
self.assertEqual(torch.float64, t.dtype)
t = torch.sparse_coo_tensor(torch.tensor(([0], [2])), torch.tensor([1]))
self.assertEqual(torch.int64, t.dtype)
@cuda_only
def test_factory_device_type_inference(self):
# both indices/values are CUDA
shape = (1, 3)
for indices_device in ['cuda', 'cpu']:
for values_device in ['cuda', 'cpu']:
for sparse_device in ['cuda', 'cpu', None]:
t = torch.sparse_coo_tensor(torch.tensor(([0], [2]), device=indices_device),
torch.tensor([1.], device=values_device),
(1, 3), device=sparse_device)
should_be_cuda = sparse_device == 'cuda' or (sparse_device is None and values_device == 'cuda')
self.assertEqual(should_be_cuda, t.is_cuda)
@cpu_only
def test_factory_copy(self):
# both correct
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.tensor([1.], dtype=torch.float64)
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
self.assertEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
self.assertEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
# only indices correct
indices = torch.tensor(([0], [2]), dtype=torch.int64)
values = torch.tensor([1.], dtype=torch.float32)
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
self.assertEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
self.assertNotEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
# only values correct
indices = torch.tensor(([0], [2]), dtype=torch.int32)
values = torch.tensor([1.], dtype=torch.float64)
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
self.assertNotEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
self.assertEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
# neither correct
indices = torch.tensor(([0], [2]), dtype=torch.int32)
values = torch.tensor([1.], dtype=torch.float32)
sparse_tensor = torch.sparse_coo_tensor(indices, values, dtype=torch.float64)
self.assertNotEqual(indices.data_ptr(), sparse_tensor._indices().data_ptr())
self.assertNotEqual(values.data_ptr(), sparse_tensor._values().data_ptr())
@cpu_only # not really, but we only really want to run this once
def test_dtypes(self):
all_sparse_dtypes = [dtype for dtype in torch.testing.get_all_dtypes() if dtype != torch.float16]
TestTorch._test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu'))
if torch.cuda.is_available():
TestTorch._test_dtypes(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
@cpu_only # not really, but we only really want to run this once
def test_empty_full(self):
all_sparse_dtypes = [dtype for dtype in torch.testing.get_all_dtypes() if dtype != torch.float16]
TestTorch._test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cpu'))
if torch.cuda.device_count() > 0:
TestTorch._test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, -1)
TestTorch._test_empty_full(self, all_sparse_dtypes, torch.sparse_coo, torch.device('cuda:0'))
def test_is_sparse(self):
x = torch.randn(3, 3)
self.assertFalse(x.is_sparse)
x = self.SparseTensor()
self.assertTrue(x.is_sparse)
def test_resize_as(self):
def do_test(t):
y = t.new().resize_as_(t).zero_()
self.assertEqual(y.shape, t.shape)
# Check that y can be added to t. Currently, this requires that
# _dimI and _dimV match.
self.assertEqual(t, t + y)
do_test(self.SparseTensor())
class TestUncoalescedSparse(TestSparse):
def setUp(self):
super(TestUncoalescedSparse, self).setUp()
self.is_uncoalesced = True
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
class TestCudaSparse(TestSparse):
def setUp(self):
super(TestCudaSparse, self).setUp()
self.is_cuda = True
self.IndexTensor = torch.cuda.LongTensor
self.ValueTensor = torch.cuda.DoubleTensor
self.SparseTensor = torch.cuda.sparse.DoubleTensor
@unittest.skipIf(not TEST_CUDA, 'CUDA not available')
class TestCudaUncoalescedSparse(TestCudaSparse):
def setUp(self):
super(TestCudaUncoalescedSparse, self).setUp()
self.is_uncoalesced = True
if __name__ == '__main__':
run_tests()