| import math |
| import torch |
| from .optimizer import Optimizer |
| |
| |
| class SparseAdam(Optimizer): |
| """Implements lazy version of Adam algorithm suitable for sparse tensors. |
| |
| In this variant, only moments that show up in the gradient get updated, and |
| only those portions of the gradient get applied to the parameters. |
| |
| Arguments: |
| params (iterable): iterable of parameters to optimize or dicts defining |
| parameter groups |
| lr (float, optional): learning rate (default: 1e-3) |
| betas (Tuple[float, float], optional): coefficients used for computing |
| running averages of gradient and its square (default: (0.9, 0.999)) |
| eps (float, optional): term added to the denominator to improve |
| numerical stability (default: 1e-8) |
| |
| .. _Adam\: A Method for Stochastic Optimization: |
| https://arxiv.org/abs/1412.6980 |
| """ |
| |
| def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8): |
| if not 0.0 < lr: |
| raise ValueError("Invalid learning rate: {}".format(lr)) |
| if not 0.0 < eps: |
| raise ValueError("Invalid epsilon value: {}".format(eps)) |
| if not 0.0 <= betas[0] < 1.0: |
| raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
| if not 0.0 <= betas[1] < 1.0: |
| raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
| defaults = dict(lr=lr, betas=betas, eps=eps) |
| super(SparseAdam, self).__init__(params, defaults) |
| |
| def step(self, closure=None): |
| """Performs a single optimization step. |
| |
| Arguments: |
| closure (callable, optional): A closure that reevaluates the model |
| and returns the loss. |
| """ |
| loss = None |
| if closure is not None: |
| loss = closure() |
| |
| for group in self.param_groups: |
| for p in group['params']: |
| if p.grad is None: |
| continue |
| grad = p.grad.data |
| if not grad.is_sparse: |
| raise RuntimeError('SparseAdam does not support dense gradients, please consider Adam instead') |
| |
| state = self.state[p] |
| |
| # State initialization |
| if len(state) == 0: |
| state['step'] = 0 |
| # Exponential moving average of gradient values |
| state['exp_avg'] = torch.zeros_like(p.data) |
| # Exponential moving average of squared gradient values |
| state['exp_avg_sq'] = torch.zeros_like(p.data) |
| |
| state['step'] += 1 |
| |
| grad = grad.coalesce() # the update is non-linear so indices must be unique |
| grad_indices = grad._indices() |
| grad_values = grad._values() |
| size = grad.size() |
| |
| def make_sparse(values): |
| constructor = grad.new |
| if grad_indices.dim() == 0 or values.dim() == 0: |
| return constructor().resize_as_(grad) |
| return constructor(grad_indices, values, size) |
| |
| exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] |
| beta1, beta2 = group['betas'] |
| |
| # Decay the first and second moment running average coefficient |
| # old <- b * old + (1 - b) * new |
| # <==> old += (1 - b) * (new - old) |
| old_exp_avg_values = exp_avg.sparse_mask(grad)._values() |
| exp_avg_update_values = grad_values.sub(old_exp_avg_values).mul_(1 - beta1) |
| exp_avg.add_(make_sparse(exp_avg_update_values)) |
| old_exp_avg_sq_values = exp_avg_sq.sparse_mask(grad)._values() |
| exp_avg_sq_update_values = grad_values.pow(2).sub_(old_exp_avg_sq_values).mul_(1 - beta2) |
| exp_avg_sq.add_(make_sparse(exp_avg_sq_update_values)) |
| |
| # Dense addition again is intended, avoiding another sparse_mask |
| numer = exp_avg_update_values.add_(old_exp_avg_values) |
| exp_avg_sq_update_values.add_(old_exp_avg_sq_values) |
| denom = exp_avg_sq_update_values.sqrt_().add_(group['eps']) |
| del exp_avg_update_values, exp_avg_sq_update_values |
| |
| bias_correction1 = 1 - beta1 ** state['step'] |
| bias_correction2 = 1 - beta2 ** state['step'] |
| step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 |
| |
| p.data.add_(make_sparse(-step_size * numer.div_(denom))) |
| |
| return loss |