| import torch |
| import torch.nn.functional as F |
| from torch._six import inf |
| from operator import mul |
| from functools import reduce |
| from collections import Iterable |
| import math |
| |
| __all__ = [ |
| 'argmax', |
| 'argmin', |
| 'argsort', |
| 'btrifact', |
| 'btriunpack', |
| 'einsum', |
| 'broadcast_tensors', |
| 'isfinite', |
| 'isinf', |
| 'isnan', |
| 'norm', |
| 'meshgrid', |
| 'split', |
| 'stft', |
| 'tensordot', |
| 'unique', |
| ] |
| |
| |
| def broadcast_tensors(*tensors): |
| r"""broadcast_tensors(*tensors) -> List of Tensors |
| |
| Broadcasts the given tensors according to :ref:`_broadcasting-semantics`. |
| |
| Args: |
| *tensors: any number of tensors of the same type |
| |
| Example:: |
| |
| >>> x = torch.arange(3).view(1, 3) |
| >>> y = torch.arange(2).view(2, 1) |
| >>> a, b = torch.broadcast_tensors(x, y) |
| >>> a.size() |
| torch.Size([2, 3]) |
| >>> a |
| tensor([[0, 1, 2], |
| [0, 1, 2]]) |
| """ |
| return torch._C._VariableFunctions.broadcast_tensors(tensors) |
| |
| |
| def split(tensor, split_size_or_sections, dim=0): |
| r"""Splits the tensor into chunks. |
| |
| If :attr:`split_size_or_sections` is an integer type, then :attr:`tensor` will |
| be split into equally sized chunks (if possible). Last chunk will be smaller if |
| the tensor size along the given dimension :attr:`dim` is not divisible by |
| :attr:`split_size`. |
| |
| If :attr:`split_size_or_sections` is a list, then :attr:`tensor` will be split |
| into ``len(split_size_or_sections)`` chunks with sizes in :attr:`dim` according |
| to :attr:`split_size_or_sections`. |
| |
| Arguments: |
| tensor (Tensor): tensor to split. |
| split_size_or_sections (int) or (list(int)): size of a single chunk or |
| list of sizes for each chunk |
| dim (int): dimension along which to split the tensor. |
| """ |
| # Overwriting reason: |
| # This dispatches to two ATen functions depending on the type of |
| # split_size_or_sections. The branching code is in tensor.py, which we |
| # call here. |
| return tensor.split(split_size_or_sections, dim) |
| |
| |
| def btrifact(A, info=None, pivot=True): |
| r"""Batch LU factorization. |
| |
| Returns a tuple containing the LU factorization and pivots. Pivoting is done if |
| :attr:`pivot` is set. |
| |
| The optional argument :attr:`info` stores information if the factorization |
| succeeded for each minibatch example. The :attr:`info` is provided as an |
| `IntTensor`, its values will be filled from dgetrf and a non-zero value |
| indicates an error occurred. Specifically, the values are from cublas if cuda is |
| being used, otherwise LAPACK. |
| |
| .. warning:: |
| The :attr:`info` argument is deprecated in favor of :meth:`torch.btrifact_with_info`. |
| |
| Arguments: |
| A (Tensor): the tensor to factor |
| info (IntTensor, optional): (deprecated) an `IntTensor` to store values |
| indicating whether factorization succeeds |
| pivot (bool, optional): controls whether pivoting is done |
| |
| Returns: |
| A tuple containing factorization and pivots. |
| |
| Example:: |
| |
| >>> A = torch.randn(2, 3, 3) |
| >>> A_LU, pivots = torch.btrifact(A) |
| >>> A_LU |
| tensor([[[ 1.3506, 2.5558, -0.0816], |
| [ 0.1684, 1.1551, 0.1940], |
| [ 0.1193, 0.6189, -0.5497]], |
| |
| [[ 0.4526, 1.2526, -0.3285], |
| [-0.7988, 0.7175, -0.9701], |
| [ 0.2634, -0.9255, -0.3459]]]) |
| |
| >>> pivots |
| tensor([[ 3, 3, 3], |
| [ 3, 3, 3]], dtype=torch.int32) |
| """ |
| # Overwriting reason: |
| # `info` is being deprecated in favor of `btrifact_with_info`. This warning |
| # is in tensor.py, which we call here. |
| return A.btrifact(info, pivot) |
| |
| |
| def btriunpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True): |
| r"""Unpacks the data and pivots from a batched LU factorization (btrifact) of a tensor. |
| |
| Returns a tuple of tensors as ``(the pivots, the L tensor, the U tensor)``. |
| |
| Arguments: |
| LU_data (Tensor): the packed LU factorization data |
| LU_pivots (Tensor): the packed LU factorization pivots |
| unpack_data (bool): flag indicating if the data should be unpacked |
| unpack_pivots (bool): flag indicating if the pivots should be unpacked |
| |
| Example:: |
| |
| >>> A = torch.randn(2, 3, 3) |
| >>> A_LU, pivots = A.btrifact() |
| >>> P, A_L, A_U = torch.btriunpack(A_LU, pivots) |
| >>> |
| >>> # can recover A from factorization |
| >>> A_ = torch.bmm(P, torch.bmm(A_L, A_U)) |
| """ |
| |
| nBatch, sz, _ = LU_data.size() |
| |
| if unpack_data: |
| I_U = torch.triu(torch.ones(sz, sz)).type_as(LU_data).byte().unsqueeze(0).expand(nBatch, sz, sz) |
| I_L = 1 - I_U |
| L = LU_data.new(LU_data.size()).zero_() |
| U = LU_data.new(LU_data.size()).zero_() |
| I_diag = torch.eye(sz).type_as(LU_data).byte().unsqueeze(0).expand(nBatch, sz, sz) |
| L[I_diag] = 1.0 |
| L[I_L] = LU_data[I_L] |
| U[I_U] = LU_data[I_U] |
| else: |
| L = U = None |
| |
| if unpack_pivots: |
| P = torch.eye(sz).type_as(LU_data).unsqueeze(0).repeat(nBatch, 1, 1) |
| for i in range(nBatch): |
| for j in range(sz): |
| k = int(LU_pivots[i, j] - 1) |
| t = P[i, :, j].clone() |
| P[i, :, j] = P[i, :, k] |
| P[i, :, k] = t |
| else: |
| P = None |
| |
| return P, L, U |
| |
| |
| def einsum(equation, *operands): |
| r"""einsum(equation, *operands) -> Tensor |
| |
| This function provides a way of computing multilinear expressions (i.e. sums of products) using the |
| Einstein summation convention. |
| |
| Args: |
| equation (string): The equation is given in terms of lower case letters (indices) to be associated |
| with each dimension of the operands and result. The left hand side lists the operands |
| dimensions, separated by commas. There should be one index letter per tensor dimension. |
| The right hand side follows after `->` and gives the indices for the output. |
| If the `->` and right hand side are omitted, it implicitly defined as the alphabetically |
| sorted list of all indices appearing exactly once in the left hand side. |
| The indices not apprearing in the output are summed over after multiplying the operands |
| entries. |
| If an index appears several times for the same operand, a diagonal is taken. |
| Ellipses `...` represent a fixed number of dimensions. If the right hand side is inferred, |
| the ellipsis dimensions are at the beginning of the output. |
| operands (list of Tensors): The operands to compute the Einstein sum of. |
| Note that the operands are passed as a list, not as individual arguments. |
| |
| Examples:: |
| |
| >>> x = torch.randn(5) |
| >>> y = torch.randn(4) |
| >>> torch.einsum('i,j->ij', x, y) # outer product |
| tensor([[-0.0570, -0.0286, -0.0231, 0.0197], |
| [ 1.2616, 0.6335, 0.5113, -0.4351], |
| [ 1.4452, 0.7257, 0.5857, -0.4984], |
| [-0.4647, -0.2333, -0.1883, 0.1603], |
| [-1.1130, -0.5588, -0.4510, 0.3838]]) |
| |
| |
| >>> A = torch.randn(3,5,4) |
| >>> l = torch.randn(2,5) |
| >>> r = torch.randn(2,4) |
| >>> torch.einsum('bn,anm,bm->ba', l, A, r) # compare torch.nn.functional.bilinear |
| tensor([[-0.3430, -5.2405, 0.4494], |
| [ 0.3311, 5.5201, -3.0356]]) |
| |
| |
| >>> As = torch.randn(3,2,5) |
| >>> Bs = torch.randn(3,5,4) |
| >>> torch.einsum('bij,bjk->bik', As, Bs) # batch matrix multiplication |
| tensor([[[-1.0564, -1.5904, 3.2023, 3.1271], |
| [-1.6706, -0.8097, -0.8025, -2.1183]], |
| |
| [[ 4.2239, 0.3107, -0.5756, -0.2354], |
| [-1.4558, -0.3460, 1.5087, -0.8530]], |
| |
| [[ 2.8153, 1.8787, -4.3839, -1.2112], |
| [ 0.3728, -2.1131, 0.0921, 0.8305]]]) |
| |
| >>> A = torch.randn(3, 3) |
| >>> torch.einsum('ii->i', A) # diagonal |
| tensor([-0.7825, 0.8291, -0.1936]) |
| |
| >>> A = torch.randn(4, 3, 3) |
| >>> torch.einsum('...ii->...i', A) # batch diagonal |
| tensor([[-1.0864, 0.7292, 0.0569], |
| [-0.9725, -1.0270, 0.6493], |
| [ 0.5832, -1.1716, -1.5084], |
| [ 0.4041, -1.1690, 0.8570]]) |
| |
| >>> A = torch.randn(2, 3, 4, 5) |
| >>> torch.einsum('...ij->...ji', A).shape # batch permute |
| torch.Size([2, 3, 5, 4]) |
| """ |
| if len(operands) == 1 and isinstance(operands[0], (list, tuple)): |
| # the old interface of passing the operands as one list argument |
| operands = operands[0] |
| return torch._C._VariableFunctions.einsum(equation, operands) |
| |
| |
| def isfinite(tensor): |
| r"""Returns a new tensor with boolean elements representing if each element is `Finite` or not. |
| |
| Arguments: |
| tensor (Tensor): A tensor to check |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location of finite elements and 0 otherwise |
| |
| Example:: |
| |
| >>> torch.isfinite(torch.Tensor([1, float('inf'), 2, float('-inf'), float('nan')])) |
| tensor([ 1, 0, 1, 0, 0], dtype=torch.uint8) |
| """ |
| if not isinstance(tensor, torch.Tensor): |
| raise ValueError("The argument is not a tensor", str(tensor)) |
| return (tensor == tensor) & (tensor.abs() != inf) |
| |
| |
| def isinf(tensor): |
| r"""Returns a new tensor with boolean elements representing if each element is `+/-INF` or not. |
| |
| Arguments: |
| tensor (Tensor): A tensor to check |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location of `+/-INF` elements and 0 otherwise |
| |
| Example:: |
| |
| >>> torch.isinf(torch.Tensor([1, float('inf'), 2, float('-inf'), float('nan')])) |
| tensor([ 0, 1, 0, 1, 0], dtype=torch.uint8) |
| """ |
| if not isinstance(tensor, torch.Tensor): |
| raise ValueError("The argument is not a tensor", str(tensor)) |
| return tensor.abs() == inf |
| |
| |
| def meshgrid(*tensors, **kwargs): |
| r"""Take :math:`N` tensors, each of which can be either scalar or 1-dimensional |
| vector, and create :math:`N` N-dimensional grids, where the :math:`i`th grid is defined by |
| expanding the :math:`i`th input over dimensions defined by other inputs. |
| |
| |
| Args: |
| tensors (list of Tensor): list of scalars or 1 dimensional tensors. Scalars will be |
| treated as tensors of size :math:`(1,)` automatically |
| |
| Returns: |
| seq (sequence of Tensors): If the input has :math:`k` tensors of size |
| :math:`(N_1,), (N_2,), \ldots , (N_k,)`, then the output would also has :math:`k` tensors, |
| where all tensors are of size :math:`(N_1, N_2, \ldots , N_k)`. |
| |
| Example:: |
| |
| >>> x = torch.tensor([1, 2, 3]) |
| >>> y = torch.tensor([4, 5, 6]) |
| >>> grid_x, grid_y = torch.meshgrid(x, y) |
| >>> grid_x |
| tensor([[1, 1, 1], |
| [2, 2, 2], |
| [3, 3, 3]]) |
| >>> grid_y |
| tensor([[4, 5, 6], |
| [4, 5, 6], |
| [4, 5, 6]]) |
| """ |
| if kwargs: |
| raise TypeError("meshgrid() got an unexpected keyword argument '%s'" % (list(kwargs)[0],)) |
| if len(tensors) == 1 and isinstance(tensors[0], (list, tuple)): |
| # the old interface of passing the operands as one list argument |
| tensors = tensors[0] |
| return torch._C._VariableFunctions.meshgrid(tensors) |
| |
| |
| def stft(input, n_fft, hop_length=None, win_length=None, window=None, |
| center=True, pad_mode='reflect', normalized=False, onesided=True): |
| r"""Short-time Fourier transform (STFT). |
| |
| Ignoring the optional batch dimension, this method computes the following |
| expression: |
| |
| .. math:: |
| X[m, \omega] = \sum_{k = 0}^{\text{win\_length}}% |
| \text{window}[k]\ \text{input}[m \times \text{hop\_length} + k]\ % |
| \exp\left(- j \frac{2 \pi \cdot \omega k}{\text{win\_length}}\right), |
| |
| where :math:`m` is the index of the sliding window, and :math:`\omega` is |
| the frequency that :math:`0 \leq \omega < \text{n\_fft}`. When |
| :attr:`onesided` is the default value ``True``, |
| |
| * :attr:`input` must be either a 1-D time sequenceor 2-D a batch of time |
| sequences. |
| |
| * If :attr:`hop_length` is ``None`` (default), it is treated as equal to |
| ``floor(n_fft / 4)``. |
| |
| * If :attr:`win_length` is ``None`` (default), it is treated as equal to |
| :attr:`n_fft`. |
| |
| * :attr:`window` can be a 1-D tensor of size :attr:`win_length`, e.g., from |
| :meth:`torch.hann_window`. If :attr:`window` is ``None`` (default), it is |
| treated as if having :math:`1` everywhere in the window. If |
| :math:`\text{win\_length} < \text{n\_fft}`, :attr:`window` will be padded on |
| both sides to length :attr:`n_fft` before being applied. |
| |
| * If :attr:`center` is ``True`` (default), :attr:`input` will be padded on |
| both sides so that the :math:`t`-th frame is centered at time |
| :math:`t \times \text{hop\_length}`. Otherwise, the :math:`t`-th frame |
| begins at time :math:`t \times \text{hop\_length}`. |
| |
| * :attr:`pad_mode` determines the padding method used on :attr:`input` when |
| :attr:`center` is ``True``. See :meth:`torch.nn.functional.pad` for |
| all available options. Default is ``"reflect"``. |
| |
| * If :attr:`onesided` is ``True`` (default), only values for :math:`\omega` |
| in :math:`\left[0, 1, 2, \dots, \left\lfloor \frac{\text{n\_fft}}{2} \right\rfloor + 1\right]` |
| are returned because the real-to-complex Fourier transform satisfies the |
| conjugate symmetry, i.e., :math:`X[m, \omega] = X[m, \text{n\_fft} - \omega]^*`. |
| |
| * If :attr:`normalized` is ``True`` (default is ``False``), the function |
| returns the normalized STFT results, i.e., multiplied by :math:`(\text{frame\_length})^{-0.5}`. |
| |
| Returns the real and the imaginary parts together as one tensor of size |
| :math:`(* \times N \times T \times 2)`, where :math:`*` is the optional |
| batch size of :attr:`input`, :math:`N` is the number of frequencies where |
| STFT is applied, :math:`T` is the total number of frames used, and each pair |
| in the last dimension represents a complex number as the real part and the |
| imaginary part. |
| |
| .. warning:: |
| This function changed signature at version 0.4.1. Calling with the |
| previous signature may cause error or return incorrect result. |
| |
| Arguments: |
| input (Tensor): the input tensor |
| n_fft (int, optional): size of Fourier transform |
| hop_length (int): the distance between neighboring sliding window |
| frames. Default: ``None`` (treated as equal to ``floor(n_fft / 4)``) |
| win_length (int): the size of window frame and STFT filter. |
| Default: ``None`` (treated as equal to :attr:`n_fft`) |
| window (Tensor, optional): the optional window function. |
| Default: ``None`` (treated as window of all :math:`1` s) |
| center (bool, optional): whether to pad :attr:`input` on both sides so |
| that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`. |
| Default: ``True`` |
| pad_mode (string, optional): controls the padding method used when |
| :attr:`center` is ``True``. Default: ``"reflect"`` |
| normalized (bool, optional): controls whether to return the normalized STFT results |
| Default: ``False`` |
| onesided (bool, optional): controls whether to return half of results to |
| avoid redundancy Default: ``True`` |
| |
| Returns: |
| Tensor: A tensor containing the STFT result with shape described above |
| |
| """ |
| # TODO: after having proper ways to map Python strings to ATen Enum, move |
| # this and F.pad to ATen. |
| if center: |
| signal_dim = input.dim() |
| extended_shape = [1] * (3 - signal_dim) + list(input.size()) |
| pad = int(n_fft // 2) |
| input = F.pad(input.view(extended_shape), (pad, pad), pad_mode) |
| input = input.view(input.shape[-signal_dim:]) |
| return torch._C._VariableFunctions.stft(input, n_fft, hop_length, win_length, window, normalized, onesided) |
| |
| |
| def isnan(tensor): |
| r"""Returns a new tensor with boolean elements representing if each element is `NaN` or not. |
| |
| Arguments: |
| tensor (Tensor): A tensor to check |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location of `NaN` elements. |
| |
| Example:: |
| |
| >>> torch.isnan(torch.tensor([1, float('nan'), 2])) |
| tensor([ 0, 1, 0], dtype=torch.uint8) |
| """ |
| if not isinstance(tensor, torch.Tensor): |
| raise ValueError("The argument is not a tensor", str(tensor)) |
| return tensor != tensor |
| |
| |
| def unique(input, sorted=False, return_inverse=False, dim=None): |
| r"""Returns the unique scalar elements of the input tensor as a 1-D tensor. |
| |
| Arguments: |
| input (Tensor): the input tensor |
| sorted (bool): Whether to sort the unique elements in ascending order |
| before returning as output. |
| return_inverse (bool): Whether to also return the indices for where |
| elements in the original input ended up in the returned unique list. |
| dim (int): the dimension to apply unique. If ``None``, the unique of the |
| flattened input is returned. default: ``None`` |
| |
| Returns: |
| (Tensor, Tensor (optional)): A tensor or a tuple of tensors containing |
| |
| - **output** (*Tensor*): the output list of unique scalar elements. |
| - **inverse_indices** (*Tensor*): (optional) if |
| :attr:`return_inverse` is True, there will be a |
| 2nd returned tensor (same shape as input) representing the indices |
| for where elements in the original input map to in the output; |
| otherwise, this function will only return a single tensor. |
| |
| Example:: |
| |
| >>> output = torch.unique(torch.tensor([1, 3, 2, 3], dtype=torch.long)) |
| >>> output |
| tensor([ 2, 3, 1]) |
| |
| >>> output, inverse_indices = torch.unique( |
| torch.tensor([1, 3, 2, 3], dtype=torch.long), sorted=True, return_inverse=True) |
| >>> output |
| tensor([ 1, 2, 3]) |
| >>> inverse_indices |
| tensor([ 0, 2, 1, 2]) |
| |
| >>> output, inverse_indices = torch.unique( |
| torch.tensor([[1, 3], [2, 3]], dtype=torch.long), sorted=True, return_inverse=True) |
| >>> output |
| tensor([ 1, 2, 3]) |
| >>> inverse_indices |
| tensor([[ 0, 2], |
| [ 1, 2]]) |
| |
| """ |
| if dim is not None: |
| output, inverse_indices = torch._unique_dim( |
| input, |
| dim, |
| sorted=sorted, |
| return_inverse=return_inverse |
| ) |
| else: |
| output, inverse_indices = torch._unique( |
| input, |
| sorted=sorted, |
| return_inverse=return_inverse, |
| ) |
| if return_inverse: |
| return output, inverse_indices |
| else: |
| return output |
| |
| |
| def argmax(input, dim=None, keepdim=False): |
| r"""Returns the indices of the maximum values of a tensor across a dimension. |
| |
| This is the second value returned by :meth:`torch.max`. See its |
| documentation for the exact semantics of this method. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce. If ``None``, the argmax of the |
| flattened input is returned. |
| keepdim (bool): whether the output tensors have :attr:`dim` |
| retained or not. Ignored if ``dim=None``. |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 1.3398, 0.2663, -0.2686, 0.2450], |
| [-0.7401, -0.8805, -0.3402, -1.1936], |
| [ 0.4907, -1.3948, -1.0691, -0.3132], |
| [-1.6092, 0.5419, -0.2993, 0.3195]]) |
| |
| |
| >>> torch.argmax(a, dim=1) |
| tensor([ 0, 2, 0, 1]) |
| """ |
| if dim is None: |
| return torch._argmax(input.contiguous().view(-1), dim=0, keepdim=False) |
| return torch._argmax(input, dim, keepdim) |
| |
| |
| def argmin(input, dim=None, keepdim=False): |
| r"""Returns the indices of the minimum values of a tensor across a dimension. |
| |
| This is the second value returned by :meth:`torch.min`. See its |
| documentation for the exact semantics of this method. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce. If ``None``, the argmin of the |
| flattened input is returned. |
| keepdim (bool): whether the output tensors have :attr:`dim` |
| retained or not. Ignored if ``dim=None``. |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 0.1139, 0.2254, -0.1381, 0.3687], |
| [ 1.0100, -1.1975, -0.0102, -0.4732], |
| [-0.9240, 0.1207, -0.7506, -1.0213], |
| [ 1.7809, -1.2960, 0.9384, 0.1438]]) |
| |
| |
| >>> torch.argmin(a, dim=1) |
| tensor([ 2, 1, 3, 1]) |
| """ |
| if dim is None: |
| return torch._argmin(input.contiguous().view(-1), dim=0, keepdim=False) |
| return torch._argmin(input, dim, keepdim) |
| |
| |
| def tensordot(a, b, dims=2): |
| r"""Returns a contraction of a and b over multiple dimensions. |
| |
| :attr:`tensordot` implements a generalizes the matrix product. |
| |
| Args: |
| a (Tensor): Left tensor to contract |
| b (Tensor): Right tensor to contract |
| dims (int or tuple of two lists of integers): number of dimensions to |
| contract or explicit lists of dimensions for :attr:`a` and |
| :attr:`b` respectively |
| |
| When called with an integer argument :attr:`dims` = :math:`d`, and the number of |
| dimensions of :attr:`a` and :attr:`b` is :math:`m` and :math:`n`, respectively, |
| it computes |
| |
| .. math:: |
| r_{i_0,...,i_{m-d}, i_d,...,i_n} |
| = \sum_{k_0,...,k_{d-1}} a_{i_0,...,i_{m-d},k_0,...,k_{d-1}} \times b_{k_0,...,k_{d-1}, i_d,...,i_n}. |
| |
| When called with :attr:`dims` of the list form, the given dimensions will be contracted |
| in place of the last :math:`d` of :attr:`a` and the first :math:`d` of :math:`b`. The sizes |
| in these dimensions must match, but :attr:`tensordot` will deal with broadcasted |
| dimensions. |
| |
| Examples:: |
| |
| >>> a = torch.arange(60.).reshape(3, 4, 5) |
| >>> b = torch.arange(24.).reshape(4, 3, 2) |
| >>> torch.tensordot(a, b, dims=([1, 0], [0, 1])) |
| tensor([[4400., 4730.], |
| [4532., 4874.], |
| [4664., 5018.], |
| [4796., 5162.], |
| [4928., 5306.]]) |
| |
| >>> a = torch.randn(3, 4, 5, device='cuda') |
| >>> b = torch.randn(4, 5, 6, device='cuda') |
| >>> c = torch.tensordot(a, b, dims=2).cpu() |
| tensor([[ 8.3504, -2.5436, 6.2922, 2.7556, -1.0732, 3.2741], |
| [ 3.3161, 0.0704, 5.0187, -0.4079, -4.3126, 4.8744], |
| [ 0.8223, 3.9445, 3.2168, -0.2400, 3.4117, 1.7780]]) |
| |
| """ |
| if isinstance(dims, (list, tuple)) or \ |
| (isinstance(dims, torch.Tensor) and dims.numel() > 1): |
| dims_a, dims_b = dims |
| else: |
| if isinstance(dims, torch.Tensor): |
| dims = dims.item() |
| dims_a = list(range(-dims, 0)) |
| dims_b = list(range(dims)) |
| return torch._C._VariableFunctions.tensordot(a, b, dims_a, dims_b) |
| |
| |
| def argsort(input, dim=None, descending=False): |
| r"""Returns the indices that sort a tensor along a given dimension in ascending |
| order by value. |
| |
| This is the second value returned by :meth:`torch.sort`. See its documentation |
| for the exact semantics of this method. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int, optional): the dimension to sort along |
| descending (bool, optional): controls the sorting order (ascending or descending) |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 0.0785, 1.5267, -0.8521, 0.4065], |
| [ 0.1598, 0.0788, -0.0745, -1.2700], |
| [ 1.2208, 1.0722, -0.7064, 1.2564], |
| [ 0.0669, -0.2318, -0.8229, -0.9280]]) |
| |
| |
| >>> torch.argsort(a, dim=1) |
| tensor([[2, 0, 3, 1], |
| [3, 2, 1, 0], |
| [2, 1, 0, 3], |
| [3, 2, 1, 0]]) |
| """ |
| if dim is None: |
| return torch.sort(input, -1, descending)[1] |
| return torch.sort(input, dim, descending)[1] |
| |
| |
| def norm(input, p="fro", dim=None, keepdim=False, out=None): |
| r"""Returns the matrix norm or vector norm of a given tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| p (int, float, inf, -inf, 'fro', 'nuc', optional): the order of norm. Default: ``'fro'`` |
| The following norms can be calculated: |
| |
| ===== ============================ ========================== |
| ord matrix norm vector norm |
| ===== ============================ ========================== |
| None Frobenius norm 2-norm |
| 'fro' Frobenius norm -- |
| 'nuc' nuclear norm -- |
| Other as vec norm when dim is None sum(abs(x)**ord)**(1./ord) |
| ===== ============================ ========================== |
| |
| dim (int, 2-tuple of ints, 2-list of ints, optional): If it is an int, |
| vector norm will be calculated, if it is 2-tuple of ints, matrix norm |
| will be calculated. If the value is None, matrix norm will be calculated |
| when the input tensor only has two dimensions, vector norm will be |
| calculated when the input tensor only has one dimension. If the input |
| tensor has more than two dimensions, the vector norm will be applied to |
| last dimension. |
| keepdim (bool, optional): whether the output tensors have :attr:`dim` |
| retained or not. Ignored if :attr:`dim` = ``None`` and |
| :attr:`out` = ``None``. Default: ``False`` |
| out (Tensor, optional): the output tensor. Ignored if |
| :attr:`dim` = ``None`` and :attr:`out` = ``None``. |
| |
| Example:: |
| |
| >>> import torch |
| >>> a = torch.arange(9, dtype= torch.float) - 4 |
| >>> b = a.reshape((3, 3)) |
| >>> torch.norm(a) |
| tensor(7.7460) |
| >>> torch.norm(b) |
| tensor(7.7460) |
| >>> torch.norm(a, float('inf')) |
| tensor(4.) |
| >>> torch.norm(b, float('inf')) |
| tensor([4., 3., 4.]) |
| >>> c = torch.tensor([[ 1, 2, 3],[-1, 1, 4]] , dtype= torch.float) |
| >>> torch.norm(c, dim=0) |
| tensor([1.4142, 2.2361, 5.0000]) |
| >>> torch.norm(c, dim=1) |
| tensor([3.7417, 4.2426]) |
| >>> torch.norm(c, p=1, dim=1) |
| tensor([6., 6.]) |
| >>> d = torch.arange(8, dtype= torch.float).reshape(2,2,2) |
| >>> torch.norm(d, dim=(1,2)) |
| tensor([ 3.7417, 11.2250]) |
| >>> torch.norm(d[0, :, :]), torch.norm(d[1, :, :]) |
| (tensor(3.7417), tensor(11.2250)) |
| """ |
| ndim = input.dim() |
| |
| # catch default case |
| if dim is None and out is None: |
| if p == "fro": |
| return torch._C._VariableFunctions.frobenius_norm(input) |
| elif p != "nuc": |
| return torch._C._VariableFunctions.norm(input, p) |
| |
| if p == "fro": |
| if dim is None: |
| dim = tuple(range(ndim)) |
| if out is None: |
| return torch._C._VariableFunctions.frobenius_norm(input, dim, keepdim=keepdim) |
| return torch._C._VariableFunctions.frobenius_norm(input, dim, keepdim=keepdim, out=out) |
| elif p == "nuc": |
| if out is None: |
| torch._C._VariableFunctions.nuclear_norm(input, keepdim=keepdim) |
| return torch._C._VariableFunctions.nuclear_norm(input, keepdim=keepdim, out=out) |
| else: |
| if out is None: |
| return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim) |
| return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim, out=out) |